論文の概要: Adoption of Watermarking for Generative AI Systems in Practice and Implications under the new EU AI Act
- arxiv url: http://arxiv.org/abs/2503.18156v1
- Date: Sun, 23 Mar 2025 17:55:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:39:38.939684
- Title: Adoption of Watermarking for Generative AI Systems in Practice and Implications under the new EU AI Act
- Title(参考訳): 次世代AIシステムへの透かしの導入 : EUの新しいAI法の下での実践と意味
- Authors: Bram Rijsbosch, Gijs van Dijck, Konrad Kollnig,
- Abstract要約: 本稿では,画像生成において最も広く使用されている50のAIシステムについて,実証分析を行い,これをAI法の法的解析に組み込む。
我々は、AI法に基づき、生成AI画像システムの4つのカテゴリを特定し、各カテゴリの法的義務を概説し、現在適切な透かしを実施しているのは、少数の提供者のみである。
- 参考スコア(独自算出の注目度): 4.2125200966193885
- License:
- Abstract: AI-generated images have become so good in recent years that individuals cannot distinguish them any more from "real" images. This development creates a series of societal risks, and challenges our perception of what is true and what is not, particularly with the emergence of "deep fakes" that impersonate real individuals. Watermarking, a technique that involves embedding identifying information within images to indicate their AI-generated nature, has emerged as a primary mechanism to address the risks posed by AI-generated images. The implementation of watermarking techniques is now becoming a legal requirement in many jurisdictions, including under the new 2024 EU AI Act. Despite the widespread use of AI image generation systems, the current status of watermarking implementation remains largely unexamined. Moreover, the practical implications of the AI Act's watermarking requirements have not previously been studied. The present paper therefore both provides an empirical analysis of 50 of the most widely used AI systems for image generation, and embeds this empirical analysis into a legal analysis of the AI Act. We identify four categories of generative AI image systems relevant under the AI Act, outline the legal obligations for each category, and find that only a minority number of providers currently implement adequate watermarking practices.
- Abstract(参考訳): AI生成画像は近年非常に良くなり、個人は「本物の」画像と区別することができない。
この発展は、社会的なリスクを連続的に生み出し、現実の個人を偽装する「ディープフェイク」の出現によって、何が真実で何がそうでないことに対する私たちの認識に挑戦する。
画像に識別情報を埋め込んでAI生成の性質を示す手法であるウォーターマーキングが、AI生成画像によって引き起こされるリスクに対処するための主要なメカニズムとして登場した。
透かし技術の実装は、EUの新しい2024年AI法を含む多くの司法管轄区域で法的要件となっている。
AI画像生成システムが広く使われているにもかかわらず、透かしの実装の現状はほとんど検討されていない。
さらに、AI法の透かし要件の実践的含意は、これまで研究されていない。
そこで本論文は,画像生成において最も広く使用されているAIシステム50の実証分析を行い,この経験分析をAI法の法的解析に組み込む。
我々は、AI法に基づき、生成AI画像システムの4つのカテゴリを特定し、各カテゴリの法的義務を概説し、現在適切な透かしを実施しているのは、少数の提供者のみである。
関連論文リスト
- AI-generated Image Quality Assessment in Visual Communication [72.11144790293086]
AIGI-VCは、視覚コミュニケーションにおけるAI生成画像の品質評価データベースである。
データセットは、14の広告トピックと8つの感情タイプにまたがる2500のイメージで構成されている。
粗い人間の嗜好アノテーションときめ細かい嗜好記述を提供し、選好予測、解釈、推論におけるIQAメソッドの能力をベンチマークする。
論文 参考訳(メタデータ) (2024-12-20T08:47:07Z) - SoK: Watermarking for AI-Generated Content [112.9218881276487]
ウォーターマーキングスキームは、AI生成コンテンツに隠された信号を埋め込んで、信頼性の高い検出を可能にする。
透かしは、誤情報や偽造と戦ってAIの安全性と信頼性を高める上で重要な役割を果たす。
本研究の目的は、研究者が透かし法や応用の進歩を指導し、GenAIの幅広い意味に対処する政策立案者を支援することである。
論文 参考訳(メタデータ) (2024-11-27T16:22:33Z) - SoK: On the Role and Future of AIGC Watermarking in the Era of Gen-AI [24.187726079290357]
AIGCの透かしは、悪意のあるアクティビティを緩和するための効果的なソリューションを提供する。
透かしのコア特性に基づいた分類法を提供する。
我々はAIGC透かしの機能とセキュリティの脅威について論じる。
論文 参考訳(メタデータ) (2024-11-18T11:26:42Z) - Certifiably Robust Image Watermark [57.546016845801134]
ジェネレーティブAIは、偽情報やプロパガンダキャンペーンの促進など、多くの社会的懸念を提起する。
ウォーターマークAI生成コンテンツは、これらの懸念に対処するための重要な技術である。
本報告では, 除去・偽造攻撃に対するロバスト性保証を保証した最初の画像透かしを提案する。
論文 参考訳(メタデータ) (2024-07-04T17:56:04Z) - RIGID: A Training-free and Model-Agnostic Framework for Robust AI-Generated Image Detection [60.960988614701414]
RIGIDは、堅牢なAI生成画像検出のためのトレーニング不要でモデルに依存しない方法である。
RIGIDは、既存のトレーニングベースおよびトレーニング不要な検出器を著しく上回っている。
論文 参考訳(メタデータ) (2024-05-30T14:49:54Z) - Protect-Your-IP: Scalable Source-Tracing and Attribution against Personalized Generation [19.250673262185767]
画像著作権のソーストレーシングと属性の統一的なアプローチを提案する。
本稿では,プロアクティブ戦略とパッシブ戦略を融合した革新的な透かし属性法を提案する。
オンラインで公開されている様々なセレブの肖像画シリーズを用いて実験を行った。
論文 参考訳(メタデータ) (2024-05-26T15:14:54Z) - The Adversarial AI-Art: Understanding, Generation, Detection, and Benchmarking [47.08666835021915]
本稿では,AI生成画像(AI-art)を敵のシナリオで理解し,検出するための体系的な試みを提案する。
ARIAという名前のデータセットには、アートワーク(絵画)、ソーシャルメディアイメージ、ニュース写真、災害シーン、アニメ画像の5つのカテゴリに140万以上の画像が含まれている。
論文 参考訳(メタデータ) (2024-04-22T21:00:13Z) - ACW: Enhancing Traceability of AI-Generated Codes Based on Watermarking [5.782554045290121]
コードの一部がAIによって生成されるのか、どのAIが創造者であるのかを知ることが望ましい。
ウォーターマーキングは広く有望なソリューションと考えられており、AI生成テキストの特定に成功している。
本稿では,AI生成コードの透かし手法であるACW(AI Code Watermarking)を提案する。
論文 参考訳(メタデータ) (2024-02-12T09:40:18Z) - CopyScope: Model-level Copyright Infringement Quantification in the
Diffusion Workflow [6.6282087165087304]
著作権侵害の定量化は、AIが生成した画像著作権トレーサビリティへの第一かつ挑戦的なステップである。
モデルレベルからAI生成画像の侵害を定量化する新しいフレームワークであるCopyScopeを提案する。
論文 参考訳(メタデータ) (2023-10-13T13:08:09Z) - DeepfakeArt Challenge: A Benchmark Dataset for Generative AI Art Forgery and Data Poisoning Detection [57.51313366337142]
悪意ある目的のために生成的AIを使用することについて懸念が高まっている。
生成AIを用いた視覚コンテンツ合成の領域では、画像偽造とデータ中毒が重要な関心事となっている。
DeepfakeArt Challenge(ディープフェイクアートチャレンジ)は、AIアートのジェネレーションとデータ中毒検出のための機械学習アルゴリズムの構築を支援するために設計された、大規模なチャレンジベンチマークデータセットである。
論文 参考訳(メタデータ) (2023-06-02T05:11:27Z) - Evading Watermark based Detection of AI-Generated Content [45.47476727209842]
生成AIモデルは、非常に現実的なコンテンツを生成することができる。
WatermarkはAI生成コンテンツの検出に活用されている。
類似の透かしをデコードできれば、コンテンツはAI生成として検出される。
論文 参考訳(メタデータ) (2023-05-05T19:20:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。