論文の概要: Risk Management for Distributed Arbitrage Systems: Integrating Artificial Intelligence
- arxiv url: http://arxiv.org/abs/2503.18265v1
- Date: Mon, 24 Mar 2025 01:15:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 16:32:17.06968
- Title: Risk Management for Distributed Arbitrage Systems: Integrating Artificial Intelligence
- Title(参考訳): 分散Arbitrageシステムにおけるリスク管理 : 人工知能の統合
- Authors: Akaash Vishal Hazarika, Mahak Shah, Swapnil Patil, Pradyumna Shukla,
- Abstract要約: 本研究では,分散仲裁システムにおけるリスク管理における人工知能の統合に関する調査と比較分析を行う。
本稿では、メモリキャッシュ、分散キャッシュ、プロキシキャッシュなど、現代のキャッシュ技術について検討し、分散化環境での性能向上に寄与する機能について述べる。
この比較研究は、遅延低減、ロードバランシング、システムのレジリエンスといった重要なパフォーマンス指標を強調し、著名なDeFi技術からさまざまなケーススタディを評価する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Effective risk management solutions become absolutely crucial when financial markets embrace distributed technology and decentralized financing (DeFi). This study offers a thorough survey and comparative analysis of the integration of artificial intelligence (AI) in risk management for distributed arbitrage systems. We examine several modern caching techniques namely in memory caching, distributed caching, and proxy caching and their functions in enhancing performance in decentralized settings. Through literature review we examine the utilization of AI techniques for alleviating risks related to market volatility, liquidity challenges, operational failures, regulatory compliance, and security threats. This comparison research evaluates various case studies from prominent DeFi technologies, emphasizing critical performance metrics like latency reduction, load balancing, and system resilience. Additionally, we examine the problems and trade offs associated with these technologies, emphasizing their effects on consistency, scalability, and fault tolerance. By meticulously analyzing real world applications, specifically centering on the Aave platform as our principal case study, we illustrate how the purposeful amalgamation of AI with contemporary caching methodologies has revolutionized risk management in distributed arbitrage systems.
- Abstract(参考訳): 金融市場が分散技術と分散型金融(DeFi)を採用すると、効果的なリスク管理ソリューションが極めて重要になります。
本研究では,分散仲裁システムのリスク管理における人工知能(AI)の統合に関する詳細な調査と比較分析を行う。
本稿では、メモリキャッシュ、分散キャッシュ、プロキシキャッシュなど、現代のキャッシュ技術と、分散化された設定におけるパフォーマンス向上機能について検討する。
文献レビューを通じて、市場ボラティリティ、流動性課題、運用上の障害、規制コンプライアンス、セキュリティ脅威に関連するリスクを軽減するために、AI技術の利用について検討する。
この比較研究は、遅延低減、ロードバランシング、システムのレジリエンスといった重要なパフォーマンス指標を強調し、著名なDeFi技術からさまざまなケーススタディを評価する。
さらに、これらの技術に関連する問題やトレードオフを調査し、一貫性、スケーラビリティ、耐障害性にそれらの影響を強調します。
実世界のアプリケーション、特にAaveプラットフォームを中心に綿密に分析することにより、現代のキャッシュ手法によるAIの目的の融合が、分散仲裁システムにおけるリスク管理に革命をもたらしたかを説明する。
関連論文リスト
- Supply Chain Network Security Investment Strategies Based on Nonlinear Budget Constraints: The Moderating Roles of Market Share and Attack Risk [4.916547346134989]
本研究では、予算制約のないサイバーセキュリティ投資最適化モデルを提案する。
このモデルは、2つの小売店と2つの需要市場の実験的なスケナリオスにおいて、高いサイバーセキュリティレベル0.96と0.95を達成する。
論文 参考訳(メタデータ) (2025-02-11T11:37:58Z) - Beyond the Surface: An NLP-based Methodology to Automatically Estimate CVE Relevance for CAPEC Attack Patterns [42.63501759921809]
本稿では,自然言語処理(NLP)を利用して,共通脆弱性・暴露(CAPEC)脆弱性と共通攻撃パターン・分類(CAPEC)攻撃パターンを関連付ける手法を提案する。
実験による評価は,最先端モデルと比較して優れた性能を示した。
論文 参考訳(メタデータ) (2025-01-13T08:39:52Z) - Bringing Order Amidst Chaos: On the Role of Artificial Intelligence in Secure Software Engineering [0.0]
進化を続ける技術的景観は、機会と脅威の両方を提供し、カオスと秩序が競合する動的な空間を作り出す。
セキュアなソフトウェアエンジニアリング(SSE)は、ソフトウェアシステムを危険にさらす脆弱性に継続的に対処しなければならない。
この論文は、AIの精度に影響を与えるドメイン固有の違いに対処することで、SSEのカオスに秩序をもたらすことを目指している。
論文 参考訳(メタデータ) (2025-01-09T11:38:58Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
EAI(Embodied AI)は、高度なAIモデルを現実世界のインタラクションのための物理的なエンティティに統合する。
高レベルのタスク計画のためのEAIエージェントの"脳"としてのファンデーションモデルは、有望な結果を示している。
しかし、これらのエージェントの物理的環境への展開は、重大な安全性上の課題を呈している。
本研究では,EAIシナリオにおける身体的リスクの自動評価のための新しいフレームワークEARBenchを紹介する。
論文 参考訳(メタデータ) (2024-08-08T13:19:37Z) - ABI Approach: Automatic Bias Identification in Decision-Making Under Risk based in an Ontology of Behavioral Economics [46.57327530703435]
損失回避のようなバイアスによって引き起こされる損失に対する優先順位を求めるリスクは、課題を引き起こし、深刻なネガティブな結果をもたらす可能性がある。
本研究は,リスクサーチの選好を自動的に識別し,説明することにより,組織意思決定者を支援する新しいソリューションであるABIアプローチを紹介する。
論文 参考訳(メタデータ) (2024-05-22T23:53:46Z) - Dynamic Vulnerability Criticality Calculator for Industrial Control Systems [0.0]
本稿では,動的脆弱性臨界計算機を提案する革新的な手法を提案する。
本手法は, 環境トポロジの分析と, 展開されたセキュリティ機構の有効性を包含する。
本手法では,これらの要因を総合的なファジィ認知マップモデルに統合し,攻撃経路を組み込んで全体の脆弱性スコアを総合的に評価する。
論文 参考訳(メタデータ) (2024-03-20T09:48:47Z) - Mapping LLM Security Landscapes: A Comprehensive Stakeholder Risk Assessment Proposal [0.0]
本稿では,従来のシステムにおけるリスク評価手法のようなツールを用いたリスク評価プロセスを提案する。
我々は、潜在的な脅威要因を特定し、脆弱性要因に対して依存するシステムコンポーネントをマッピングするためのシナリオ分析を行う。
3つの主要株主グループに対する脅威もマップ化しています。
論文 参考訳(メタデータ) (2024-03-20T05:17:22Z) - AI in Supply Chain Risk Assessment: A Systematic Literature Review and Bibliometric Analysis [0.0]
本研究では,Google Scholar and Web of Scienceの1,903項目をPRISMAガイドラインで選択した54項目について検討した。
その結果,ランダムフォレスト,XGBoost,ハイブリッドアプローチなどのMLモデルは,パンデミック後の文脈におけるリスク予測精度と適応性を大幅に向上させることがわかった。
この研究は、データ品質や解釈可能性といった課題に対処するために、動的な戦略、学際的なコラボレーション、継続的なモデル評価の必要性を強調している。
論文 参考訳(メタデータ) (2023-12-12T17:47:51Z) - AttNS: Attention-Inspired Numerical Solving For Limited Data Scenarios [51.94807626839365]
限定データによる微分方程式の解法として,注目型数値解法(AttNS)を提案する。
AttNSは、モデル一般化とロバスト性の向上におけるResidual Neural Networks(ResNet)のアテンションモジュールの効果にインスパイアされている。
論文 参考訳(メタデータ) (2023-02-05T01:39:21Z) - Causal Fairness Analysis [68.12191782657437]
意思決定設定における公平性の問題を理解し、モデル化し、潜在的に解決するためのフレームワークを導入します。
我々のアプローチの主な洞察は、観測データに存在する格差の定量化と、基礎となる、しばしば観測されていない、因果的なメカニズムの収集を結びつけることである。
本研究は,文献中の異なる基準間の関係を整理し,説明するための最初の体系的試みであるフェアネスマップにおいて,本研究の成果を左右するものである。
論文 参考訳(メタデータ) (2022-07-23T01:06:34Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
反現実的な説明は、望ましい結果を達成するために変更が必要な機能のセットをエンドユーザに提供することを目的としています。
現在のアプローチでは、提案された説明を達成するために必要な行動の実現可能性を考慮することはめったにない。
本稿では,非現実的説明を生成する手法として,潜時空間における干渉としての対実的説明(CEILS)を提案する。
論文 参考訳(メタデータ) (2021-06-14T20:48:48Z) - Taking Over the Stock Market: Adversarial Perturbations Against
Algorithmic Traders [47.32228513808444]
本稿では,敵対的学習手法を用いて,攻撃者がアルゴリズム取引システムに影響を与える現実的なシナリオを提案する。
入力ストリームに追加されると、我々の摂動は将来目に見えないデータポイントのトレーディングアルゴリズムを騙すことができることを示す。
論文 参考訳(メタデータ) (2020-10-19T06:28:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。