論文の概要: Benchmarking Post-Hoc Unknown-Category Detection in Food Recognition
- arxiv url: http://arxiv.org/abs/2503.18548v1
- Date: Mon, 24 Mar 2025 11:00:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:35:50.998410
- Title: Benchmarking Post-Hoc Unknown-Category Detection in Food Recognition
- Title(参考訳): 食品認識におけるホック後の未知カテゴリー検出のベンチマーク
- Authors: Lubnaa Abdur Rahman, Ioannis Papathanail, Lorenzo Brigato, Stavroula Mougiakakou,
- Abstract要約: 食品認識モデルは、しばしば非流通(ID)ラベルを割り当てることで、目に見えないサンプルを誤って分類する。
この誤分類は、これらのモデルを現実世界のアプリケーションにデプロイする際の大きな課題である。
本研究は, 食品の粒度認識のための様々なポストホックアウト・オブ・ディストリビューション(OOD)検出法を実証分析する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Food recognition models often struggle to distinguish between seen and unseen samples, frequently misclassifying samples from unseen categories by assigning them an in-distribution (ID) label. This misclassification presents significant challenges when deploying these models in real-world applications, particularly within automatic dietary assessment systems, where incorrect labels can lead to cascading errors throughout the system. Ideally, such models should prompt the user when an unknown sample is encountered, allowing for corrective action. Given no prior research exploring food recognition in real-world settings, in this work we conduct an empirical analysis of various post-hoc out-of-distribution (OOD) detection methods for fine-grained food recognition. Our findings indicate that virtual logit matching (ViM) performed the best overall, likely due to its combination of logits and feature-space representations. Additionally, our work reinforces prior notions in the OOD domain, noting that models with higher ID accuracy performed better across the evaluated OOD detection methods. Furthermore, transformer-based architectures consistently outperformed convolution-based models in detecting OOD samples across various methods.
- Abstract(参考訳): 食品認識モデルは、しばしば目に見えないサンプルと目に見えないサンプルを区別するのに苦労し、しばしば非分布(ID)ラベルを割り当てることで、目に見えないカテゴリから標本を誤分類する。
この誤分類は、これらのモデルを現実世界のアプリケーション、特に不正なラベルがシステム全体のカスケードエラーを引き起こす自動食事評価システムにデプロイする際の重大な課題を示す。
理想的には、そのようなモデルは未知のサンプルが遭遇した時にユーザーを刺激し、修正アクションを可能にする。
本研究は, 実環境下で食品の認識を探索する先行研究を前提とせず, 食品の微粒化のための様々なポストホックアウト・オブ・ディストリビューション(OOD)検出法を実証分析する。
以上の結果から,仮想ロジットマッチング(Virtual logit matching, 仮想ロジットマッチング, 仮想ロジットマッチング, 仮想ロジットマッチング, 仮想ロジットマッチング, 仮想ロジットマッチング, 仮想ロジットマッチング)が最も優れていた。
さらに,本研究はOOD領域における先行概念を補強し,評価されたOOD検出方法よりも高いID精度のモデルの方が優れた性能を示した。
さらに、トランスフォーマーベースのアーキテクチャは、様々な方法にわたるOODサンプルの検出において、畳み込みベースのモデルよりも一貫して優れていた。
関連論文リスト
- Going Beyond Conventional OOD Detection [0.0]
アウト・オブ・ディストリビューション(OOD)検出は、重要なアプリケーションにディープラーニングモデルの安全なデプロイを保証するために重要である。
従来型OOD検出(ASCOOD)への統一的アプローチを提案する。
提案手法は, スパイラル相関の影響を効果的に軽減し, 微粒化特性の獲得を促す。
論文 参考訳(メタデータ) (2024-11-16T13:04:52Z) - TTA-OOD: Test-time Augmentation for Improving Out-of-Distribution Detection in Gastrointestinal Vision [6.290783164114315]
テスト時間拡張セグメントをOOD検出パイプラインに導入する。
この拡張は画素空間をシフトさせ、OOD例のより明確な意味表現へと変換する。
我々は既存のOODスコアに対して評価を行った。
論文 参考訳(メタデータ) (2024-07-19T04:50:54Z) - Out-of-Distribution Detection Using Peer-Class Generated by Large Language Model [0.0]
アウト・オブ・ディストリビューション(OOD)検出は、マシンラーニングモデルの信頼性とセキュリティを確保するための重要なタスクである。
本稿では,ODPCと呼ばれる新しい手法を提案し,大規模言語モデルを用いてOODピア・セマンティクスのクラスを生成する。
5つのベンチマークデータセットの実験により,提案手法は最先端の結果が得られることが示された。
論文 参考訳(メタデータ) (2024-03-20T06:04:05Z) - From Global to Local: Multi-scale Out-of-distribution Detection [129.37607313927458]
アウト・オブ・ディストリビューション(OOD)検出は、イン・ディストリビューション(ID)トレーニングプロセス中にラベルが見られない未知のデータを検出することを目的としている。
近年の表現学習の進歩により,距離に基づくOOD検出がもたらされる。
グローバルな視覚情報と局所的な情報の両方を活用する第1のフレームワークであるマルチスケールOOD検出(MODE)を提案する。
論文 参考訳(メタデータ) (2023-08-20T11:56:25Z) - DIVERSIFY: A General Framework for Time Series Out-of-distribution
Detection and Generalization [58.704753031608625]
時系列は、機械学習研究における最も困難なモダリティの1つである。
時系列上でのOODの検出と一般化は、その非定常性によって悩まされる傾向がある。
時系列の動的分布のOOD検出と一般化のためのフレームワークであるDIVERSIFYを提案する。
論文 参考訳(メタデータ) (2023-08-04T12:27:11Z) - General-Purpose Multi-Modal OOD Detection Framework [5.287829685181842]
アウト・オブ・ディストリビューション(OOD)検出は、機械学習(ML)システムの安全性と信頼性を保証するために重要なトレーニングデータとは異なるテストサンプルを特定する。
本稿では,2値分類器とコントラスト学習コンポーネントを組み合わせた,汎用的な弱教師付きOOD検出フレームワークWOODを提案する。
提案したWOODモデルを複数の実世界のデータセット上で評価し、実験結果により、WOODモデルがマルチモーダルOOD検出の最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-07-24T18:50:49Z) - Unleashing Mask: Explore the Intrinsic Out-of-Distribution Detection
Capability [70.72426887518517]
Out-of-Distribution(OOD)検出は、機械学習モデルを現実世界のアプリケーションにデプロイする際に、セキュアAIの必須の側面である。
本稿では,IDデータを用いた学習モデルのOOD識別能力を復元する新しい手法であるUnleashing Maskを提案する。
本手法では, マスクを用いて記憶した非定型サンプルを抽出し, モデルを微調整するか, 導入したマスクでプルーする。
論文 参考訳(メタデータ) (2023-06-06T14:23:34Z) - Pseudo-OOD training for robust language models [78.15712542481859]
OOD検出は、あらゆる産業規模のアプリケーションに対する信頼性の高い機械学習モデルの鍵となるコンポーネントである。
In-distribution(IND)データを用いて擬似OODサンプルを生成するPOORE-POORE-POSthoc pseudo-Ood Regularizationを提案する。
我々は3つの現実世界の対話システムに関する枠組みを広く評価し、OOD検出における新たな最先端技術を実現した。
論文 参考訳(メタデータ) (2022-10-17T14:32:02Z) - Learn what you can't learn: Regularized Ensembles for Transductive
Out-of-distribution Detection [76.39067237772286]
ニューラルネットワークの現在のアウト・オブ・ディストリビューション(OOD)検出アルゴリズムは,様々なOOD検出シナリオにおいて不満足な結果をもたらすことを示す。
本稿では,テストデータのバッチを観察した後に検出方法を調整することで,このような「ハード」なOODシナリオがいかに有用かを検討する。
本稿では,テストデータと正規化に人工ラベリング手法を用いて,テストバッチ内のOODサンプルに対してのみ矛盾予測を生成するモデルのアンサンブルを求める手法を提案する。
論文 参考訳(メタデータ) (2020-12-10T16:55:13Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
本稿では,識別器のミラー化ワッサースタイン損失を利用して,よりセマンティックレベルの再構築を行う逆自動エンコーダの変種を提案する。
我々は,再建基準の代替として,異常スコアの代替尺度を提案した。
提案手法は,OOD検出ベンチマークにおける異常検出の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2020-03-24T08:26:58Z) - Detecting Out-of-Distribution Examples with In-distribution Examples and
Gram Matrices [8.611328447624679]
ディープニューラルネットワークは、アウト・オブ・ディストリビューション(Out-of-Distribution)の例で示すと、信頼性と誤った予測をもたらす。
本稿では,行動パターンとクラス予測の不整合を識別し,OODのサンプルを検出することを提案する。
グラム行列による活動パターンの特徴付けとグラム行列値の異常の同定により,高いOOD検出率が得られることがわかった。
論文 参考訳(メタデータ) (2019-12-28T19:44:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。