論文の概要: No Black Box Anymore: Demystifying Clinical Predictive Modeling with Temporal-Feature Cross Attention Mechanism
- arxiv url: http://arxiv.org/abs/2503.19285v1
- Date: Tue, 25 Mar 2025 02:35:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-26 16:51:29.649760
- Title: No Black Box Anymore: Demystifying Clinical Predictive Modeling with Temporal-Feature Cross Attention Mechanism
- Title(参考訳): ブラックボックスはもうない: 時間-機能的クロスアテンション機構による臨床予測モデル
- Authors: Yubo Li, Xinyu Yao, Rema Padman,
- Abstract要約: TFCAM(Temporal-Feature Cross Attention Mechanism)は、臨床機能間の動的相互作用を時間をかけて捉えるための新しいディープラーニングフレームワークである。
慢性腎臓病の1,422人を対象に行った実験では、TFCAMはLSTMおよびRETAINベースラインに優れ、AUROCは0.95、F1スコアは0.69であった。
- 参考スコア(独自算出の注目度): 7.510165488300369
- License:
- Abstract: Despite the outstanding performance of deep learning models in clinical prediction tasks, explainability remains a significant challenge. Inspired by transformer architectures, we introduce the Temporal-Feature Cross Attention Mechanism (TFCAM), a novel deep learning framework designed to capture dynamic interactions among clinical features across time, enhancing both predictive accuracy and interpretability. In an experiment with 1,422 patients with Chronic Kidney Disease, predicting progression to End-Stage Renal Disease, TFCAM outperformed LSTM and RETAIN baselines, achieving an AUROC of 0.95 and an F1-score of 0.69. Beyond performance gains, TFCAM provides multi-level explainability by identifying critical temporal periods, ranking feature importance, and quantifying how features influence each other across time before affecting predictions. Our approach addresses the "black box" limitations of deep learning in healthcare, offering clinicians transparent insights into disease progression mechanisms while maintaining state-of-the-art predictive performance.
- Abstract(参考訳): 臨床予測タスクにおける深層学習モデルの卓越した性能にもかかわらず、説明性は依然として重要な課題である。
TFCAM(Temporal-Feature Cross Attention Mechanism)は,臨床機能間の動的相互作用を時間とともに捉え,予測精度と解釈可能性の両方を向上させるための,新しいディープラーニングフレームワークである。
慢性腎臓病の1,422人の患者を対象に行った実験では、TFCAMはLSTMおよびRETAINベースラインを上回り、AUROCは0.95、F1スコアは0.69であった。
パフォーマンス向上以外にも、TFCAMは、重要な時間的期間を特定し、機能の重要性をランク付けし、予測に影響を与える前に機能がどのように影響するかを定量化することで、マルチレベルな説明可能性を提供する。
我々のアプローチは、医療における深層学習の「ブラックボックス」の限界に対処し、臨床医が最先端の予測性能を維持しながら、疾患の進行メカニズムを透明に把握することを可能にする。
関連論文リスト
- Enhancing End Stage Renal Disease Outcome Prediction: A Multi-Sourced Data-Driven Approach [7.212939068975618]
10,326人のCKD患者のデータを利用して,2009年から2018年までの臨床とクレーム情報を組み合わせた。
24ヶ月の観測窓は早期検出と予測精度のバランスをとるのに最適であると同定された。
2021年のeGFR方程式は予測精度を改善し、特にアフリカ系アメリカ人の偏見を低減した。
論文 参考訳(メタデータ) (2024-10-02T03:21:01Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
そこで本研究では,様々な種類の臨床イベント間の相互作用を捉えるために,潜伏状態空間生成モデルを提案する。
また,死亡率と臓器不全の関連性について有意な知見が得られた。
論文 参考訳(メタデータ) (2024-07-28T02:42:36Z) - Explainable Artificial Intelligence Techniques for Irregular Temporal Classification of Multidrug Resistance Acquisition in Intensive Care Unit Patients [7.727213847237959]
本研究では,GRU(Gated Recurrent Units)と高度な内在的・ポストホック的解釈可能性技術を統合した新しい手法を提案する。
ICU患者に対するMDR(Multidrug-Resistant)感染に関連する危険因子の特定を目的とした。
論文 参考訳(メタデータ) (2024-07-24T11:12:01Z) - Interpretable Vital Sign Forecasting with Model Agnostic Attention Maps [5.354055742467353]
本稿では,ディープラーニングモデルとアテンションメカニズムを組み合わせたフレームワークを提案する。
注意機構は,N-HiTSやN-BEATSといった様々なブラックボックス時系列予測モデルに適用可能であることを示す。
論文 参考訳(メタデータ) (2024-05-02T20:19:07Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
変形性膝関節症 (KOA) は膝関節の慢性的な痛みと硬直を引き起こす疾患である。
我々は,Swin Transformer を用いて KOA の重大度を予測する自動手法を提案する。
論文 参考訳(メタデータ) (2023-07-10T09:49:30Z) - Forecasting Patient Flows with Pandemic Induced Concept Drift using
Explainable Machine Learning [0.0]
本研究では,患者フローの予測モデルを改善する新しい準リアルタイム変数群について検討した。
新型コロナウイルス(COVID-19)のアラートレベル(Alert Level)機能は、Googleの検索語や歩行者のトラフィックとともに、一般的な予測を生成するのに効果的だった。
論文 参考訳(メタデータ) (2022-11-01T20:42:26Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
治療のパーソナライズされた効果を見積もるのは複雑だが、普及している問題である。
ヘテロジニアス処理効果推定に関する機械学習文献の最近の進歩は、洗練されたが不透明なツールの多くを生み出した。
我々は、ポストホックな特徴重要度法を用いて、モデルの予測に影響を及ぼす特徴を特定する。
論文 参考訳(メタデータ) (2022-06-16T17:59:05Z) - Disentangled Counterfactual Recurrent Networks for Treatment Effect
Inference over Time [71.30985926640659]
本稿では,DCRN(Disentangled Counterfactual Recurrent Network)を提案する。
時間とともに治療効果の因果構造に完全にインスパイアされたアーキテクチャでは、予測精度と疾患理解が向上する。
実データとシミュレーションデータの両方において,DCRNが処理応答予測の最先端手法より優れていることを示す。
論文 参考訳(メタデータ) (2021-12-07T16:40:28Z) - A Knowledge Distillation Ensemble Framework for Predicting Short and
Long-term Hospitalisation Outcomes from Electronic Health Records Data [5.844828229178025]
既存の結果予測モデルは、頻繁なポジティブな結果の低いリコールに悩まされる。
我々は、死亡率とICUの受け入れによって表される逆さを自動的に予測する、高度にスケーリング可能な、堅牢な機械学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-11-18T15:56:28Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
本稿では,患者の予後と治療反応を予測するための統合型深層学習手法を提案する。
我々は,マルチモーダル非同期時系列分類タスクとして,確率モデリングを定式化する。
我々の予測モデルは、長期生存の観点から、低リスク、高リスクの患者をさらに階層化する可能性がある。
論文 参考訳(メタデータ) (2020-10-08T15:30:17Z) - Prediction of the onset of cardiovascular diseases from electronic
health records using multi-task gated recurrent units [51.14334174570822]
本稿では,電子カルテから心血管イベントを予測するための注意機構を備えたマルチタスク・リカレントニューラルネットワークを提案する。
提案手法は、NHS Foundation Trustの5年間のデータを用いて、標準的な臨床リスク予測器(QRISK)と機械学習の代替手段と比較される。
論文 参考訳(メタデータ) (2020-07-16T17:43:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。