Exploring Spatial Language Grounding Through Referring Expressions
- URL: http://arxiv.org/abs/2502.04359v1
- Date: Tue, 04 Feb 2025 22:58:15 GMT
- Title: Exploring Spatial Language Grounding Through Referring Expressions
- Authors: Akshar Tumu, Parisa Kordjamshidi,
- Abstract summary: We propose using the Referring Expression task as a platform for the evaluation of spatial reasoning by Vision-language models (VLMs)
This platform provides the opportunity for a deeper analysis of spatial comprehension and grounding abilities when there is 1) ambiguity in object detection, 2) complex spatial expressions with a longer sentence structure and multiple spatial relations, and 3) expressions with negation ('not')
Our results highlight these challenges and behaviors and provide insight into research gaps and future directions.
- Score: 17.524558622186657
- License:
- Abstract: Spatial Reasoning is an important component of human cognition and is an area in which the latest Vision-language models (VLMs) show signs of difficulty. The current analysis works use image captioning tasks and visual question answering. In this work, we propose using the Referring Expression Comprehension task instead as a platform for the evaluation of spatial reasoning by VLMs. This platform provides the opportunity for a deeper analysis of spatial comprehension and grounding abilities when there is 1) ambiguity in object detection, 2) complex spatial expressions with a longer sentence structure and multiple spatial relations, and 3) expressions with negation ('not'). In our analysis, we use task-specific architectures as well as large VLMs and highlight their strengths and weaknesses in dealing with these specific situations. While all these models face challenges with the task at hand, the relative behaviors depend on the underlying models and the specific categories of spatial semantics (topological, directional, proximal, etc.). Our results highlight these challenges and behaviors and provide insight into research gaps and future directions.
Related papers
- Reframing Spatial Reasoning Evaluation in Language Models: A Real-World Simulation Benchmark for Qualitative Reasoning [4.422649561583363]
We present a novel benchmark for assessing spatial reasoning in language models (LMs)
It is grounded in realistic 3D simulation data, offering a series of diverse room layouts with various objects and their spatial relationships.
A key contribution is our logic-based consistency-checking tool, which enables the assessment of multiple plausible solutions.
arXiv Detail & Related papers (2024-05-23T21:22:00Z) - Improving Vision-and-Language Reasoning via Spatial Relations Modeling [30.477235227733928]
Visual commonsense reasoning (VCR) is a challenging multi-modal task.
The proposed method can guide the representations to maintain more spatial context.
We achieve the state-of-the-art results on VCR and two other vision-and-language reasoning tasks VQA, and NLVR.
arXiv Detail & Related papers (2023-11-09T11:54:55Z) - A Joint Study of Phrase Grounding and Task Performance in Vision and Language Models [28.746370086515977]
Key to tasks that require reasoning about natural language in visual contexts is grounding words and phrases to image regions.
We propose a framework to jointly study task performance and phrase grounding.
We show how this can be addressed through brute-force training on ground phrasing annotations.
arXiv Detail & Related papers (2023-09-06T03:54:57Z) - Towards Grounded Visual Spatial Reasoning in Multi-Modal Vision Language
Models [3.86170450233149]
We show that large vision-and-language models (VLMs) trained to match images with text lack fine-grained understanding of spatial relations.
We propose an alternative fine-grained, compositional approach for recognizing and ranking spatial clauses.
arXiv Detail & Related papers (2023-08-18T18:58:54Z) - Foundational Models Defining a New Era in Vision: A Survey and Outlook [151.49434496615427]
Vision systems to see and reason about the compositional nature of visual scenes are fundamental to understanding our world.
The models learned to bridge the gap between such modalities coupled with large-scale training data facilitate contextual reasoning, generalization, and prompt capabilities at test time.
The output of such models can be modified through human-provided prompts without retraining, e.g., segmenting a particular object by providing a bounding box, having interactive dialogues by asking questions about an image or video scene or manipulating the robot's behavior through language instructions.
arXiv Detail & Related papers (2023-07-25T17:59:18Z) - DiPlomat: A Dialogue Dataset for Situated Pragmatic Reasoning [89.92601337474954]
Pragmatic reasoning plays a pivotal role in deciphering implicit meanings that frequently arise in real-life conversations.
We introduce a novel challenge, DiPlomat, aiming at benchmarking machines' capabilities on pragmatic reasoning and situated conversational understanding.
arXiv Detail & Related papers (2023-06-15T10:41:23Z) - Benchmarking Spatial Relationships in Text-to-Image Generation [102.62422723894232]
We investigate the ability of text-to-image models to generate correct spatial relationships among objects.
We present VISOR, an evaluation metric that captures how accurately the spatial relationship described in text is generated in the image.
Our experiments reveal a surprising finding that, although state-of-the-art T2I models exhibit high image quality, they are severely limited in their ability to generate multiple objects or the specified spatial relations between them.
arXiv Detail & Related papers (2022-12-20T06:03:51Z) - CLEAR: Improving Vision-Language Navigation with Cross-Lingual,
Environment-Agnostic Representations [98.30038910061894]
Vision-and-Language Navigation (VLN) tasks require an agent to navigate through the environment based on language instructions.
We propose CLEAR: Cross-Lingual and Environment-Agnostic Representations.
Our language and visual representations can be successfully transferred to the Room-to-Room and Cooperative Vision-and-Dialogue Navigation task.
arXiv Detail & Related papers (2022-07-05T17:38:59Z) - Weakly Supervised Relative Spatial Reasoning for Visual Question
Answering [38.05223339919346]
We evaluate the faithfulness of V&L models to such geometric understanding.
We train V&L with weak supervision from off-the-shelf depth estimators.
This leads to considerable improvements in accuracy for the "GQA" visual question answering challenge.
arXiv Detail & Related papers (2021-09-04T21:29:06Z) - Understanding Spatial Relations through Multiple Modalities [78.07328342973611]
spatial relations between objects can either be explicit -- expressed as spatial prepositions, or implicit -- expressed by spatial verbs such as moving, walking, shifting, etc.
We introduce the task of inferring implicit and explicit spatial relations between two entities in an image.
We design a model that uses both textual and visual information to predict the spatial relations, making use of both positional and size information of objects and image embeddings.
arXiv Detail & Related papers (2020-07-19T01:35:08Z) - Visual Relation Grounding in Videos [86.06874453626347]
We explore a novel named visual Relation Grounding in Videos (RGV)
This task aims at providing supportive visual facts for other video-language tasks (e.g., video grounding and video question answering)
We tackle challenges by collaboratively optimizing two sequences of regions over a constructed hierarchical-temporal region.
Experimental results demonstrate our model can not only outperform baseline approaches significantly, but also produces visually meaningful facts.
arXiv Detail & Related papers (2020-07-17T08:20:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.