論文の概要: Neural variational Data Assimilation with Uncertainty Quantification using SPDE priors
- arxiv url: http://arxiv.org/abs/2402.01855v3
- Date: Tue, 28 Jan 2025 20:47:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-30 16:19:24.880076
- Title: Neural variational Data Assimilation with Uncertainty Quantification using SPDE priors
- Title(参考訳): SPDEプリエントを用いた不確かさ量子化によるニューラル変動データ同化
- Authors: Maxime Beauchamp, Ronan Fablet, Simon Benaichouche, Pierre Tandeo, Nicolas Desassis, Bertrand Chapron,
- Abstract要約: ディープラーニングコミュニティの最近の進歩は、ニューラルネットワークと変分データ同化フレームワークを通じて、この問題に対処することができる。
本研究では、部分微分方程式(SPDE)とガウス過程(GP)の理論を用いて状態の空間的および時間的共分散を推定する。
- 参考スコア(独自算出の注目度): 28.804041716140194
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The spatio-temporal interpolation of large geophysical datasets has historically been addressed by Optimal Interpolation (OI) and more sophisticated equation-based or data-driven Data Assimilation (DA) techniques. Recent advances in the deep learning community enables to address the interpolation problem through a neural architecture incorporating a variational data assimilation framework. The reconstruction task is seen as a joint learning problem of the prior involved in the variational inner cost, seen as a projection operator of the state, and the gradient-based minimization of the latter. Both prior models and solvers are stated as neural networks with automatic differentiation which can be trained by minimizing a loss function, typically the mean squared error between some ground truth and the reconstruction. Such a strategy turns out to be very efficient to improve the mean state estimation, but still needs complementary developments to quantify its related uncertainty. In this work, we use the theory of Stochastic Partial Differential Equations (SPDE) and Gaussian Processes (GP) to estimate both space-and time-varying covariance of the state. Our neural variational scheme is modified to embed an augmented state formulation with both state and SPDE parametrization to estimate. We demonstrate the potential of the proposed framework on a spatio-temporal GP driven by diffusion-based anisotropies and on realistic Sea Surface Height (SSH) datasets. We show how our solution reaches the OI baseline in the Gaussian case. For nonlinear dynamics, as almost always stated in DA, our solution outperforms OI, while allowing for fast and interpretable online parameter estimation.
- Abstract(参考訳): 大規模な物理データセットの時空間補間は、歴史的に最適補間(OI)とより洗練された方程式ベースのデータ・アシミレーション(DA)技術によって解決されてきた。
ディープラーニングコミュニティの最近の進歩は、変分データ同化フレームワークを組み込んだニューラルネットワークによる補間問題に対処することができる。
再建作業は、状態の投射演算子と見なされる変動的内部コストと、後者の勾配に基づく最小化に先立って、前者の共同学習問題と見なされる。
先行モデルと解法は、損失関数を最小化することでトレーニングできる自動微分を持つニューラルネットワークとして記述される。
このような戦略は平均状態推定を改善するために非常に効率的であることが判明したが、関連する不確実性を定量化するためには相補的な開発が必要である。
本研究では、確率偏微分方程式(SPDE)とガウス過程(GP)の理論を用いて、状態の空間的および時間的共分散を推定する。
我々のニューラル変分法は、状態とSPDEパラメトリゼーションの両方に拡張状態の定式化を組み込むように修正されている。
拡散に基づく異方性および実効的な海面高度(SSH)データセットによって駆動される時空間GPにおける提案手法の可能性を示す。
ガウスの場合、我々の解が OI ベースラインにどのように達するかを示す。
非線形力学では、ほぼ常にDAで述べられているように、我々の解はOIよりも優れており、高速かつ解釈可能なオンラインパラメータ推定が可能である。
関連論文リスト
- Decentralized Nonconvex Composite Federated Learning with Gradient Tracking and Momentum [78.27945336558987]
分散サーバ(DFL)はクライアント・クライアント・アーキテクチャへの依存をなくす。
非滑らかな正規化はしばしば機械学習タスクに組み込まれる。
本稿では,これらの問題を解決する新しいDNCFLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-04-17T08:32:25Z) - A Simultaneous Approach for Training Neural Differential-Algebraic Systems of Equations [0.4935512063616847]
我々は、未知の関係がデータから学習される方程式のニューラル微分代数系(DAE)について研究する。
ニューラルDAE問題に対して同時アプローチを適用することにより、完全に離散化された非線形最適化問題を導出する。
我々は、様々な問題設定において、精度、モデル一般化可能性、計算コストの点で有望な結果を達成する。
論文 参考訳(メタデータ) (2025-04-07T01:26:55Z) - Interpretable Deep Regression Models with Interval-Censored Failure Time Data [1.2993568435938014]
間隔制限付きデータの深層学習手法は、まだ探索が過小評価されており、特定のデータタイプやモデルに限られている。
本研究は、部分線形変換モデルの幅広いクラスを持つ区間知覚データに対する一般的な回帰フレームワークを提案する。
我々の手法をアルツハイマー病神経イメージングイニシアチブデータセットに適用すると、従来のアプローチと比較して新しい洞察と予測性能が向上する。
論文 参考訳(メタデータ) (2025-03-25T15:27:32Z) - Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems [49.819436680336786]
本研究では,高次元非定常力学系のスケーラブルかつ柔軟なモデリングのための効率的な変換ガウス過程状態空間モデル(ETGPSSM)を提案する。
具体的には、ETGPSSMは、単一の共有GPと入力依存の正規化フローを統合し、複雑な非定常遷移ダイナミクスを捉える前に、表現的な暗黙のプロセスを生成する。
ETGPSSMは、計算効率と精度の観点から、既存のGPSSMとニューラルネットワークベースのSSMより優れています。
論文 参考訳(メタデータ) (2025-03-24T03:19:45Z) - Optimal Transport-Based Displacement Interpolation with Data Augmentation for Reduced Order Modeling of Nonlinear Dynamical Systems [0.0]
本稿では,複雑なシステムにおける非線形力学の表現を強化するために,最適輸送理論と変位を利用した新しいリダクション・オーダー・モデル(ROM)を提案する。
複雑なシステム挙動の予測における精度と効率の向上を示し、計算物理学や工学における幅広い応用の可能性を示している。
論文 参考訳(メタデータ) (2024-11-13T16:29:33Z) - Variational Neural Stochastic Differential Equations with Change Points [4.692174333076032]
ニューラル微分方程式(ニューラルSDE)を用いた時系列データにおける変化点のモデル化について検討する。
本稿では,時系列をニューラルSDEとしてモデル化するための変分オートエンコーダ(VAE)フレームワークに基づく,新しいモデル定式化とトレーニング手法を提案する。
本稿では,従来のパラメトリックSDEと分散シフトを伴う実データセットの両方を効果的にモデル化できることを示す。
論文 参考訳(メタデータ) (2024-11-01T14:46:17Z) - Out of the Ordinary: Spectrally Adapting Regression for Covariate Shift [12.770658031721435]
本稿では,学習前のニューラル回帰モデルの最後の層の重みを適応させて,異なる分布から得られる入力データを改善する手法を提案する。
本稿では,この軽量なスペクトル適応手法により,合成および実世界のデータセットの分布外性能が向上することを示す。
論文 参考訳(メタデータ) (2023-12-29T04:15:58Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
多重モード回帰は非定常過程の予測や分布の複雑な混合において重要である。
構造的放射基底関数ネットワークは回帰問題に対する複数の仮説予測器のアンサンブルとして提示される。
この構造モデルにより, このテッセルレーションを効率よく補間し, 複数の仮説対象分布を近似することが可能であることが証明された。
論文 参考訳(メタデータ) (2023-09-02T01:27:53Z) - PDE+: Enhancing Generalization via PDE with Adaptive Distributional
Diffusion [66.95761172711073]
ニューラルネットワークの一般化は、機械学習における中心的な課題です。
本稿では、入力データを調整することに集中するのではなく、ニューラルネットワークの基盤機能を直接拡張することを提案する。
私たちはこの理論的フレームワークを、$textbfPDE+$$textbfPDE$ with $textbfA$daptive $textbfD$istributional $textbfD$iffusionとして実践しました。
論文 参考訳(メタデータ) (2023-05-25T08:23:26Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Variational EP with Probabilistic Backpropagation for Bayesian Neural
Networks [0.0]
本稿では,ネットワーク重みを階層的に表した2層ニューラルネットワークモデル構造を用いた非線形ロジスティック回帰手法を提案する。
私は計算効率のよいアルゴリズムを導き出し、その複雑さは独立したスパースロジスティックモデルの集合と同様にスケールする。
論文 参考訳(メタデータ) (2023-03-02T19:09:47Z) - Deep Learning Aided Laplace Based Bayesian Inference for Epidemiological
Systems [2.596903831934905]
本稿では,Laplace をベースとしたベイズ推定と ANN アーキテクチャを併用して ODE 軌道の近似を求めるハイブリッド手法を提案する。
本手法の有効性を,非分析的ソリューションを用いた疫学システム,Susceptible-Infectious-Demoved (SIR) モデルを用いて実証した。
論文 参考訳(メタデータ) (2022-10-17T09:02:41Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Scaling Structured Inference with Randomization [64.18063627155128]
本稿では、構造化されたモデルを数万の潜在状態に拡張するためにランダム化された動的プログラミング(RDP)のファミリを提案する。
我々の手法は古典的DPベースの推論に広く適用できる。
また、自動微分とも互換性があり、ニューラルネットワークとシームレスに統合できる。
論文 参考訳(メタデータ) (2021-12-07T11:26:41Z) - Probabilistic partition of unity networks: clustering based deep
approximation [0.0]
ユニタリネットワーク(POU-Nets)の分割は、回帰とPDEの解に対する代数収束率を実現することができる。
ガウス雑音モデルを用いてPOU-Netを拡張し、最大可算損失の勾配に基づく一般化を導出できる確率的一般化を得る。
本研究では,高次元・低次元での性能を定量化するためのベンチマークを行い,高次元空間内のデータの潜在次元にのみ依存することを示す。
論文 参考訳(メタデータ) (2021-07-07T08:02:00Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
本稿では,ニューラル平均場(NMF)ダイナミクスを用いた新しい学習フレームワークを提案する。
我々のフレームワークは拡散ネットワークの構造とノード感染確率の進化を同時に学習することができる。
論文 参考訳(メタデータ) (2021-06-03T00:02:05Z) - Score-Based Generative Modeling through Stochastic Differential
Equations [114.39209003111723]
複素データ分布を雑音を注入することによって既知の事前分布に変換する微分方程式を提案する。
対応する逆時間SDEは、ノイズを緩やかに除去し、先行分布をデータ分布に戻す。
スコアベース生成モデリングの進歩を活用することで、これらのスコアをニューラルネットワークで正確に推定することができる。
スコアベース生成モデルから1024×1024画像の高忠実度生成を初めて示す。
論文 参考訳(メタデータ) (2020-11-26T19:39:10Z) - Autoregressive Score Matching [113.4502004812927]
自動回帰条件スコアモデル(AR-CSM)を提案する。
AR-CSMモデルでは、このデータ分布とモデル分布のばらつきを効率的に計算し、最適化することができ、高価なサンプリングや対向訓練を必要としない。
本研究では,合成データに対する密度推定,画像生成,画像復調,暗黙エンコーダを用いた潜在変数モデルの訓練に応用できることを示す。
論文 参考訳(メタデータ) (2020-10-24T07:01:24Z) - Model Fusion with Kullback--Leibler Divergence [58.20269014662046]
異種データセットから学習した後続分布を融合する手法を提案する。
我々のアルゴリズムは、融合モデルと個々のデータセット後部の両方に対する平均場仮定に依存している。
論文 参考訳(メタデータ) (2020-07-13T03:27:45Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
本稿では,ネットワーク上の拡散の推論と推定のための新しい学習フレームワークを提案する。
本研究の枠組みは, ノード感染確率の正確な進化を得るために, モリ・ズワンジッヒ形式から導かれる。
我々のアプローチは、基礎となる拡散ネットワークモデルのバリエーションに対して多用途で堅牢である。
論文 参考訳(メタデータ) (2020-06-16T18:45:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。