Graph-to-Vision: Multi-graph Understanding and Reasoning using Vision-Language Models
- URL: http://arxiv.org/abs/2503.21435v2
- Date: Mon, 26 May 2025 16:31:06 GMT
- Title: Graph-to-Vision: Multi-graph Understanding and Reasoning using Vision-Language Models
- Authors: Ruizhou Li, Haiyun Jiang,
- Abstract summary: We introduce the first comprehensive benchmark designed to evaluate and enhance the multi-graph reasoning abilities of Vision-Language Models (VLMs)<n>Our benchmark covers four common graph types-knowledge graphs, flowcharts, mind maps, and route maps-and supports both homogeneous and heterogeneous graph groupings.<n>We evaluate several state-of-the-art VLMs under a multi-dimensional scoring framework that assesses graph parsing, reasoning consistency, and instruction-following accuracy.
- Score: 10.813015912529936
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in Vision-Language Models (VLMs) have shown promising capabilities in interpreting visualized graph data, offering a new perspective for graph-structured reasoning beyond traditional Graph Neural Networks (GNNs). However, existing studies focus primarily on single-graph reasoning, leaving the critical challenge of multi-graph joint reasoning underexplored. In this work, we introduce the first comprehensive benchmark designed to evaluate and enhance the multi-graph reasoning abilities of VLMs. Our benchmark covers four common graph types-knowledge graphs, flowcharts, mind maps, and route maps-and supports both homogeneous and heterogeneous graph groupings with tasks of increasing complexity. We evaluate several state-of-the-art VLMs under a multi-dimensional scoring framework that assesses graph parsing, reasoning consistency, and instruction-following accuracy. Additionally, we fine-tune multiple open-source models and observe consistent improvements, confirming the effectiveness of our dataset. This work provides a principled step toward advancing multi-graph understanding and reveals new opportunities for cross-modal graph intelligence.
Related papers
- Revisiting Graph Neural Networks on Graph-level Tasks: Comprehensive Experiments, Analysis, and Improvements [54.006506479865344]
We propose a unified evaluation framework for graph-level Graph Neural Networks (GNNs)
This framework provides a standardized setting to evaluate GNNs across diverse datasets.
We also propose a novel GNN model with enhanced expressivity and generalization capabilities.
arXiv Detail & Related papers (2025-01-01T08:48:53Z) - Towards Graph Foundation Models: Learning Generalities Across Graphs via Task-Trees [50.78679002846741]
We introduce a novel approach for learning cross-task generalities in graphs.<n>We propose task-trees as basic learning instances to align task spaces on graphs.<n>Our findings indicate that when a graph neural network is pretrained on diverse task-trees, it acquires transferable knowledge.
arXiv Detail & Related papers (2024-12-21T02:07:43Z) - Graph Learning in the Era of LLMs: A Survey from the Perspective of Data, Models, and Tasks [25.720233631885726]
integration of Graph Neural Networks (GNNs) and Large Language Models (LLMs) has emerged as a promising technological paradigm.<n>We leverage graph description texts with rich semantic context to fundamentally enhance Data quality.<n>This work serves as a foundational reference for researchers and practitioners looking to advance graph learning methodologies.
arXiv Detail & Related papers (2024-12-17T01:41:17Z) - VisGraphVar: A Benchmark Generator for Assessing Variability in Graph Analysis Using Large Vision-Language Models [1.597617022056624]
Large Vision-Language Models (LVLMs) are increasingly capable of tackling abstract visual tasks.
We introduce VisGraphVar, a customizable benchmark generator able to produce graph images for seven task categories.
We show that variations in visual attributes of images (e.g., node labeling and layout) and the deliberate inclusion of visual imperfections significantly affect model performance.
arXiv Detail & Related papers (2024-11-22T10:10:53Z) - Towards Graph Foundation Models: The Perspective of Zero-shot Reasoning on Knowledge Graphs [14.392577069212292]
We introduce SCORE, a unified graph reasoning framework that effectively generalizes diverse graph tasks using zero-shot learning.
We evaluate SCORE using 38 diverse graph datasets, covering node-level, link-level, and graph-level tasks across multiple domains.
arXiv Detail & Related papers (2024-10-16T14:26:08Z) - How Do Large Language Models Understand Graph Patterns? A Benchmark for Graph Pattern Comprehension [53.6373473053431]
This work introduces a benchmark to assess large language models' capabilities in graph pattern tasks.
We have developed a benchmark that evaluates whether LLMs can understand graph patterns based on either terminological or topological descriptions.
Our benchmark encompasses both synthetic and real datasets, and a variety of models, with a total of 11 tasks and 7 models.
arXiv Detail & Related papers (2024-10-04T04:48:33Z) - Exploring Graph Structure Comprehension Ability of Multimodal Large Language Models: Case Studies [7.067145619709089]
This study investigates the impact of graph visualisations on Large Language Models (LLMs) performance.
Our experiments compare the effectiveness of multimodal approaches against purely textual graph representations.
arXiv Detail & Related papers (2024-09-13T14:26:58Z) - Towards Graph Prompt Learning: A Survey and Beyond [38.55555996765227]
Large-scale "pre-train and prompt learning" paradigms have demonstrated remarkable adaptability.
This survey categorizes over 100 relevant works in this field, summarizing general design principles and the latest applications.
arXiv Detail & Related papers (2024-08-26T06:36:42Z) - Balanced Multi-Relational Graph Clustering [5.531383184058319]
Multi-relational graph clustering has demonstrated remarkable success in uncovering underlying patterns in complex networks.
Our empirical study finds the pervasive presence of imbalance in real-world graphs, which is in principle contradictory to the motivation of alignment.
We propose Balanced Multi-Relational Graph Clustering (BMGC), comprising unsupervised dominant view mining and dual signals guided representation learning.
arXiv Detail & Related papers (2024-07-23T22:11:13Z) - Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
Graph Convolutional Network (GCN) has exhibited remarkable potential in improving graph-based clustering.
Models estimate an initial graph beforehand to apply GCN.
Deep Contrastive Graph Learning (DCGL) model is proposed for general data clustering.
arXiv Detail & Related papers (2024-02-25T07:03:37Z) - When Graph Data Meets Multimodal: A New Paradigm for Graph Understanding
and Reasoning [54.84870836443311]
The paper presents a new paradigm for understanding and reasoning about graph data by integrating image encoding and multimodal technologies.
This approach enables the comprehension of graph data through an instruction-response format, utilizing GPT-4V's advanced capabilities.
The study evaluates this paradigm on various graph types, highlighting the model's strengths and weaknesses, particularly in Chinese OCR performance and complex reasoning tasks.
arXiv Detail & Related papers (2023-12-16T08:14:11Z) - Graph Foundation Models: Concepts, Opportunities and Challenges [66.37994863159861]
Foundation models have emerged as critical components in a variety of artificial intelligence applications.<n>The capabilities of foundation models in generalization and adaptation motivate graph machine learning researchers to discuss the potential of developing a new graph learning paradigm.<n>This article introduces the concept of Graph Foundation Models (GFMs), and offers an exhaustive explanation of their key characteristics and underlying technologies.
arXiv Detail & Related papers (2023-10-18T09:31:21Z) - Learning Strong Graph Neural Networks with Weak Information [64.64996100343602]
We develop a principled approach to the problem of graph learning with weak information (GLWI)
We propose D$2$PT, a dual-channel GNN framework that performs long-range information propagation on the input graph with incomplete structure, but also on a global graph that encodes global semantic similarities.
arXiv Detail & Related papers (2023-05-29T04:51:09Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
Graph-level learning has been applied to many tasks including comparison, regression, classification, and more.
Traditional approaches to learning a set of graphs rely on hand-crafted features, such as substructures.
Deep learning has helped graph-level learning adapt to the growing scale of graphs by extracting features automatically and encoding graphs into low-dimensional representations.
arXiv Detail & Related papers (2023-01-14T09:15:49Z) - Graph Pooling for Graph Neural Networks: Progress, Challenges, and
Opportunities [128.55790219377315]
Graph neural networks have emerged as a leading architecture for many graph-level tasks.
graph pooling is indispensable for obtaining a holistic graph-level representation of the whole graph.
arXiv Detail & Related papers (2022-04-15T04:02:06Z) - Group Contrastive Self-Supervised Learning on Graphs [101.45974132613293]
We study self-supervised learning on graphs using contrastive methods.
We argue that contrasting graphs in multiple subspaces enables graph encoders to capture more abundant characteristics.
arXiv Detail & Related papers (2021-07-20T22:09:21Z) - Graph Representation Learning by Ensemble Aggregating Subgraphs via
Mutual Information Maximization [5.419711903307341]
We introduce a self-supervised learning method to enhance the representations of graph-level learned by Graph Neural Networks.
To get a comprehensive understanding of the graph structure, we propose an ensemble-learning like subgraph method.
And to achieve efficient and effective contrasive learning, a Head-Tail contrastive samples construction method is proposed.
arXiv Detail & Related papers (2021-03-24T12:06:12Z) - Model-Agnostic Graph Regularization for Few-Shot Learning [60.64531995451357]
We present a comprehensive study on graph embedded few-shot learning.
We introduce a graph regularization approach that allows a deeper understanding of the impact of incorporating graph information between labels.
Our approach improves the performance of strong base learners by up to 2% on Mini-ImageNet and 6.7% on ImageNet-FS.
arXiv Detail & Related papers (2021-02-14T05:28:13Z) - Quantifying Challenges in the Application of Graph Representation
Learning [0.0]
We provide an application oriented perspective to a set of popular embedding approaches.
We evaluate their representational power with respect to real-world graph properties.
Our results suggest that "one-to-fit-all" GRL approaches are hard to define in real-world scenarios.
arXiv Detail & Related papers (2020-06-18T03:19:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.