tempdisagg: A Python Framework for Temporal Disaggregation of Time Series Data
- URL: http://arxiv.org/abs/2503.22054v1
- Date: Fri, 28 Mar 2025 00:15:52 GMT
- Title: tempdisagg: A Python Framework for Temporal Disaggregation of Time Series Data
- Authors: Jaime Vera-Jaramillo,
- Abstract summary: tempdisagg is a Python framework for temporal disaggregation of time series data.<n>It transforms low-frequency aggregates into consistent, high-frequency estimates.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: tempdisagg is a modern, extensible, and production-ready Python framework for temporal disaggregation of time series data. It transforms low-frequency aggregates into consistent, high-frequency estimates using a wide array of econometric techniques-including Chow-Lin, Denton, Litterman, Fernandez, and uniform interpolation-as well as enhanced variants with automated estimation of key parameters such as the autocorrelation coefficient rho. The package introduces features beyond classical methods, including robust ensemble modeling via non-negative least squares optimization, post-estimation correction of negative values under multiple aggregation rules, and optional regression-based imputation of missing values through a dedicated Retropolarizer module. Architecturally, it follows a modular design inspired by scikit-learn, offering a clean API for validation, modeling, visualization, and result interpretation.
Related papers
- Enhancing Foundation Models for Time Series Forecasting via Wavelet-based Tokenization [74.3339999119713]
We develop a wavelet-based tokenizer that allows models to learn complex representations directly in the space of time-localized frequencies.<n>Our method first scales and decomposes the input time series, then thresholds and quantizes the wavelet coefficients, and finally pre-trains an autoregressive model to forecast coefficients for the forecast horizon.
arXiv Detail & Related papers (2024-12-06T18:22:59Z) - Cross Space and Time: A Spatio-Temporal Unitized Model for Traffic Flow Forecasting [16.782154479264126]
Predicting backbone-temporal traffic flow presents challenges due to complex interactions between temporal factors.
Existing approaches address these dimensions in isolation, neglecting their critical interdependencies.
In this paper, we introduce Sanonymous-Temporal Unitized Unitized Cell (ASTUC), a unified framework designed to capture both spatial and temporal dependencies.
arXiv Detail & Related papers (2024-11-14T07:34:31Z) - Timer-XL: Long-Context Transformers for Unified Time Series Forecasting [67.83502953961505]
We present Timer-XL, a causal Transformer for unified time series forecasting.<n>Based on large-scale pre-training, Timer-XL achieves state-of-the-art zero-shot performance.
arXiv Detail & Related papers (2024-10-07T07:27:39Z) - Deep Ensembles Meets Quantile Regression: Uncertainty-aware Imputation for Time Series [45.76310830281876]
We propose Quantile Sub-Ensembles, a novel method to estimate uncertainty with ensemble of quantile-regression-based task networks.
Our method not only produces accurate imputations that is robust to high missing rates, but also is computationally efficient due to the fast training of its non-generative model.
arXiv Detail & Related papers (2023-12-03T05:52:30Z) - TFMQ-DM: Temporal Feature Maintenance Quantization for Diffusion Models [52.454274602380124]
Diffusion models heavily depend on the time-step $t$ to achieve satisfactory multi-round denoising.
We propose a Temporal Feature Maintenance Quantization (TFMQ) framework building upon a Temporal Information Block.
Powered by the pioneering block design, we devise temporal information aware reconstruction (TIAR) and finite set calibration (FSC) to align the full-precision temporal features.
arXiv Detail & Related papers (2023-11-27T12:59:52Z) - Deep incremental learning models for financial temporal tabular datasets
with distribution shifts [0.9790236766474201]
The framework uses a simple basic building block (decision trees) to build self-similar models of any required complexity.
We demonstrate our scheme using XGBoost models trained on the Numerai dataset and show that a two layer deep ensemble of XGBoost models over different model snapshots delivers high quality predictions.
arXiv Detail & Related papers (2023-03-14T14:10:37Z) - Ensemble Conformalized Quantile Regression for Probabilistic Time Series
Forecasting [4.716034416800441]
This paper presents a novel probabilistic forecasting method called ensemble conformalized quantile regression (EnCQR)
EnCQR constructs distribution-free and approximately marginally valid prediction intervals (PIs), is suitable for nonstationary and heteroscedastic time series data, and can be applied on top of any forecasting model.
The results demonstrate that EnCQR outperforms models based only on quantile regression or conformal prediction, and it provides sharper, more informative, and valid PIs.
arXiv Detail & Related papers (2022-02-17T16:54:20Z) - Imputing Missing Observations with Time Sliced Synthetic Minority
Oversampling Technique [0.3973560285628012]
We present a simple yet novel time series imputation technique with the goal of constructing an irregular time series that is uniform across every sample in a data set.
We fix a grid defined by the midpoints of non-overlapping bins (dubbed "slices") of observation times and ensure that each sample has values for all of the features at that given time.
This allows one to both impute fully missing observations to allow uniform time series classification across the entire data and, in special cases, to impute individually missing features.
arXiv Detail & Related papers (2022-01-14T19:23:24Z) - Scalable Spatiotemporally Varying Coefficient Modelling with Bayesian Kernelized Tensor Regression [17.158289775348063]
Kernelized tensor Regression (BKTR) can be considered a new and scalable approach to modeling processes with low-rank cotemporal structure.
We conduct extensive experiments on both synthetic and real-world data sets, and our results confirm the superior performance and efficiency of BKTR for model estimation and inference.
arXiv Detail & Related papers (2021-08-31T19:22:23Z) - Interpretable Feature Construction for Time Series Extrinsic Regression [0.028675177318965035]
In some application domains, it occurs that the target variable is numerical and the problem is known as time series extrinsic regression (TSER)
We suggest an extension of a Bayesian method for robust and interpretable feature construction and selection in the context of TSER.
Our approach exploits a relational way to tackle with TSER: (i), we build various and simple representations of the time series which are stored in a relational data scheme, then, (ii), a propositionalisation technique is applied to build interpretable features from secondary tables to "flatten" the data.
arXiv Detail & Related papers (2021-03-15T08:12:19Z) - Counting Out Time: Class Agnostic Video Repetition Counting in the Wild [82.26003709476848]
We present an approach for estimating the period with which an action is repeated in a video.
The crux of the approach lies in constraining the period prediction module to use temporal self-similarity.
We train this model, called Repnet, with a synthetic dataset that is generated from a large unlabeled video collection.
arXiv Detail & Related papers (2020-06-27T18:00:42Z) - Nonparametric Estimation in the Dynamic Bradley-Terry Model [69.70604365861121]
We develop a novel estimator that relies on kernel smoothing to pre-process the pairwise comparisons over time.
We derive time-varying oracle bounds for both the estimation error and the excess risk in the model-agnostic setting.
arXiv Detail & Related papers (2020-02-28T21:52:49Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
We propose a higher-order LSTM model that can efficiently learn long-term correlations in the video sequence.
This is accomplished through a novel tensor train module that performs prediction by combining convolutional features across time.
Our results achieve state-of-the-art performance-art in a wide range of applications and datasets.
arXiv Detail & Related papers (2020-02-21T05:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.