論文の概要: Quantum Approximate Multi-Objective Optimization
- arxiv url: http://arxiv.org/abs/2503.22797v1
- Date: Fri, 28 Mar 2025 18:00:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 19:35:56.80133
- Title: Quantum Approximate Multi-Objective Optimization
- Title(参考訳): 量子近似多目的最適化
- Authors: Ayse Kotil, Elijah Pelofske, Stephanie Riedmüller, Daniel J. Egger, Stephan Eidenbenz, Thorsten Koch, Stefan Woerner,
- Abstract要約: 多目的最適化は、量子コンピュータで解析するための魅力的な問題クラスである。
本研究では,多目的重み付き最大カット問題の最適パレートフロントを近似するために,低深さ量子近似最適化アルゴリズムを用いる。
我々は,IBM の量子コンピュータと Matrix Product State の数値シミュレーションでその性能を実証し,古典的アプローチよりも優れた性能を示す。
- 参考スコア(独自算出の注目度): 1.2564343689544843
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The goal of multi-objective optimization is to understand optimal trade-offs between competing objective functions by finding the Pareto front, i.e., the set of all Pareto optimal solutions, where no objective can be improved without degrading another one. Multi-objective optimization can be challenging classically, even if the corresponding single-objective optimization problems are efficiently solvable. Thus, multi-objective optimization represents a compelling problem class to analyze with quantum computers. In this work, we use low-depth Quantum Approximate Optimization Algorithm to approximate the optimal Pareto front of certain multi-objective weighted maximum cut problems. We demonstrate its performance on an IBM Quantum computer, as well as with Matrix Product State numerical simulation, and show its potential to outperform classical approaches.
- Abstract(参考訳): 多目的最適化の目標は、競合する目的関数間の最適トレードオフを理解することである。
多目的最適化は、たとえ対応する単目的最適化問題が効率的に解けるとしても、古典的に挑戦することができる。
したがって、多目的最適化は量子コンピュータで解析する魅力的な問題クラスである。
本研究では,多目的重み付き最大カット問題の最適パレートフロントを近似するために,低深さ量子近似最適化アルゴリズムを用いる。
我々は,IBM の量子コンピュータと Matrix Product State の数値シミュレーションでその性能を実証し,古典的アプローチよりも優れた性能を示す。
関連論文リスト
- Scalable Min-Max Optimization via Primal-Dual Exact Pareto Optimization [66.51747366239299]
拡張ラグランジアンに基づくmin-max問題のスムーズな変種を提案する。
提案アルゴリズムは, 段階的戦略よりも目的数で拡張性が高い。
論文 参考訳(メタデータ) (2025-03-16T11:05:51Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
機械学習における予測-Then-Forecast(PtO)パラダイムは、下流の意思決定品質を最大化することを目的としている。
本稿では,PtO法を拡張して,OWA(Nondifferentiable Ordered Weighted Averaging)の目的を最適化する。
この結果から,不確実性の下でのOWA関数の最適化とパラメトリック予測を効果的に統合できることが示唆された。
論文 参考訳(メタデータ) (2024-02-12T16:33:35Z) - Variational Quantum Multi-Objective Optimization [5.381539115778766]
本稿では,量子コンピュータ上での離散多目的最適化問題を解くための変分量子最適化アルゴリズムを提案する。
最大5つの目的を持つベンチマーク問題に対して提案アルゴリズムの有効性を示す。
論文 参考訳(メタデータ) (2023-12-21T18:59:21Z) - qPOTS: Efficient batch multiobjective Bayesian optimization via Pareto optimal Thompson sampling [0.0]
多目的最適化を解くためのサンプル効率のアプローチは、プロセス・オラクル・サロゲート(GP)とMOBOOTS$である。
我々はトンプソンサンプリング(TS)に基づくアプローチ(qtextttPOTS$)を提案する。
$qtextttPOTS$は、GP後部の安価な多目的最適化を進化的アプローチで解決する。
論文 参考訳(メタデータ) (2023-10-24T12:35:15Z) - Optimization on Pareto sets: On a theory of multi-objective optimization [7.907376287850398]
多目的最適化では、単一の決定ベクトルは、多くの目的間のトレードオフのバランスをとる必要がある。
我々は,制約セットの最適化を目標とする,より現実的に重要な最適化問題を考える。
論文 参考訳(メタデータ) (2023-08-04T05:55:52Z) - Multi-objective optimisation via the R2 utilities [4.12484724941528]
本稿では,多目的最適化問題を集合上で定義された単目的最適化問題に再キャストする方法を示す。
この新しい問題に対する目的関数の適切なクラスは、スカラー化された最適化問題に対する重み付き積分として定義されるユーティリティ関数であるR2ユーティリティである。
次に、これらの欲求的アルゴリズムの性能を理論的にも経験的にも分析する。
論文 参考訳(メタデータ) (2023-05-19T16:01:35Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
1つの典型的な戦略はアルゴリズムのアンローリングであり、これは反復解法の操作による自動微分に依存している。
本稿では,非ロール最適化の後方通過に関する理論的知見を提供し,効率よく解けるバックプロパゲーション解析モデルを生成するシステムに繋がる。
論文 参考訳(メタデータ) (2023-01-28T01:50:42Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
分子目的を最適化するための様々なZO最適化手法の有効性について検討する。
ZO符号に基づく勾配降下(ZO-signGD)の利点を示す。
本稿では,Guurcamol スイートから広く使用されているベンチマークタスクに対して,ZO 最適化手法の有効性を示す。
論文 参考訳(メタデータ) (2022-10-27T01:58:10Z) - A Study of Scalarisation Techniques for Multi-Objective QUBO Solving [0.0]
量子および量子に着想を得た最適化アルゴリズムは、学術ベンチマークや実世界の問題に適用した場合に有望な性能を示す。
しかし、QUBOソルバは単目的解法であり、複数の目的による問題の解法をより効率的にするためには、そのような多目的問題を単目的問題に変換する方法を決定する必要がある。
論文 参考訳(メタデータ) (2022-10-20T14:54:37Z) - Multi-objective and multi-fidelity Bayesian optimization of laser-plasma
acceleration [0.0]
シミュレーションレーザープラズマ加速器の多目的最適化に関する最初の結果を示す。
多目的最適化は単目的最適化と同等かそれ以上に性能が優れていることが判明した。
シミュレーションの解像度とボックスサイズを動的に選択することで,最適化の計算コストを大幅に削減する。
論文 参考訳(メタデータ) (2022-10-07T12:09:09Z) - Leveraging Trust for Joint Multi-Objective and Multi-Fidelity
Optimization [0.0]
本稿では,ベイズ的多目的・多忠実度最適化(MOMF)に対する新しいアプローチについて検討する。
複数目的とデータソースの同時最適化を支援するために,信頼度基準の革新的利用を提案する。
本手法はプラズマ物理学や流体力学などの分野におけるシミュレーション問題の解法に適用可能である。
論文 参考訳(メタデータ) (2021-12-27T20:55:26Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - On the Global Optimality of Model-Agnostic Meta-Learning [133.16370011229776]
モデル・ア・メタラーニング(MAML)は、メタラーニングを二段階最適化問題として定式化し、内部レベルが各サブタスクを、共有された事前に基づいて解決する。
学習と教師あり学習の両方においてMAMLが達成した定常点の最適性を特徴付ける。
論文 参考訳(メタデータ) (2020-06-23T17:33:14Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。