論文の概要: Optimization on Pareto sets: On a theory of multi-objective optimization
- arxiv url: http://arxiv.org/abs/2308.02145v1
- Date: Fri, 4 Aug 2023 05:55:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-07 13:51:30.138453
- Title: Optimization on Pareto sets: On a theory of multi-objective optimization
- Title(参考訳): パレート集合の最適化:多目的最適化の理論について
- Authors: Abhishek Roy, Geelon So, Yi-An Ma
- Abstract要約: 多目的最適化では、単一の決定ベクトルは、多くの目的間のトレードオフのバランスをとる必要がある。
我々は,制約セットの最適化を目標とする,より現実的に重要な最適化問題を考える。
- 参考スコア(独自算出の注目度): 7.907376287850398
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In multi-objective optimization, a single decision vector must balance the
trade-offs between many objectives. Solutions achieving an optimal trade-off
are said to be Pareto optimal: these are decision vectors for which improving
any one objective must come at a cost to another. But as the set of Pareto
optimal vectors can be very large, we further consider a more practically
significant Pareto-constrained optimization problem, where the goal is to
optimize a preference function constrained to the Pareto set.
We investigate local methods for solving this constrained optimization
problem, which poses significant challenges because the constraint set is (i)
implicitly defined, and (ii) generally non-convex and non-smooth, even when the
objectives are. We define notions of optimality and stationarity, and provide
an algorithm with a last-iterate convergence rate of $O(K^{-1/2})$ to
stationarity when the objectives are strongly convex and Lipschitz smooth.
- Abstract(参考訳): 多目的最適化では、単一決定ベクトルは多くの目的間のトレードオフをバランスさせなければならない。
最適なトレードオフを達成するためのソリューションは、Paretoの最適であると言われている。
しかし、パレート最適ベクトルの組は非常に大きいため、パレート集合に制約された選好関数を最適化することを目的として、より実質的に重要なパレート制約付き最適化問題を考える。
制約集合が制約集合であるため,この制約付き最適化問題の解法について検討する。
(i)暗黙的に定義し、
(ii) 目的がそうである場合でも、一般には非凸と非平滑である。
最適性と定常性の概念を定義し、目的が強凸でリプシッツが滑らかな場合、最終定値収束率$O(K^{-1/2})$のアルゴリズムを提供する。
関連論文リスト
- Preference-Optimized Pareto Set Learning for Blackbox Optimization [1.9628841617148691]
すべての目的を同時に最適化できる単一のソリューションはありません。
典型的なMOO問題では、目的間の好みを交換する最適解(パレート集合)を見つけることが目的である。
我々の定式化は、例えば微分可能なクロスエントロピー法によって解決できる二段階最適化問題につながる。
論文 参考訳(メタデータ) (2024-08-19T13:23:07Z) - Few for Many: Tchebycheff Set Scalarization for Many-Objective Optimization [14.355588194787073]
多目的最適化は、競合する目的を1つのソリューションで最適化できない現実の多くのアプリケーションで見られる。
本稿では,多数の目的をカバーできるいくつかの代表解を見つけるために,新しいTchebycheff集合スカラー化法を提案する。
このようにして、それぞれの目的は、小さな解集合の少なくとも1つの解によってうまく対応できる。
論文 参考訳(メタデータ) (2024-05-30T03:04:57Z) - Multi-Objective Bayesian Optimization with Active Preference Learning [18.066263838953223]
本稿では,多目的最適化 (MOO) 問題において最も望ましい解を特定するためのベイズ最適化 (BO) 手法を提案する。
また、意思決定者(DM)との相互作用コストを最小限に抑えるため、選好推定のためのアクティブラーニング戦略を提案する。
論文 参考訳(メタデータ) (2023-11-22T15:24:36Z) - Evolutionary Solution Adaption for Multi-Objective Metal Cutting Process
Optimization [59.45414406974091]
我々は,従来の最適化タスクから解を転送するアルゴリズムの能力を研究することのできる,システムの柔軟性のためのフレームワークを提案する。
NSGA-IIの柔軟性を2つの変種で検討し,1)2つのタスクの解を同時に最適化し,より適応性が高いと期待されるソース間の解を得る,2)活性化あるいは非活性化の異なる可能性に対応する能動的非アクティブなジェノタイプについて検討した。
その結果,標準NSGA-IIによる適応は目標目標への最適化に必要な評価回数を大幅に削減し,提案した変種は適応コストをさらに向上することがわかった。
論文 参考訳(メタデータ) (2023-05-31T12:07:50Z) - Algorithm for Constrained Markov Decision Process with Linear
Convergence [55.41644538483948]
エージェントは、そのコストに対する複数の制約により、期待される累積割引報酬を最大化することを目的としている。
エントロピー正規化ポリシーとベイダの二重化という2つの要素を統合した新しい双対アプローチが提案されている。
提案手法は(線形速度で)大域的最適値に収束することが示されている。
論文 参考訳(メタデータ) (2022-06-03T16:26:38Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
非家族問題における近位演算子を学習するためのエンドツーエンド手法を提案する。
本手法は,弱い目的と穏やかな条件下では,世界規模で収束することを示す。
論文 参考訳(メタデータ) (2022-01-28T05:53:28Z) - Faster Algorithm and Sharper Analysis for Constrained Markov Decision
Process [56.55075925645864]
制約付き意思決定プロセス (CMDP) の問題点について検討し, エージェントは, 複数の制約を条件として, 期待される累積割引報酬を最大化することを目的とする。
新しいユーティリティ・デュアル凸法は、正規化ポリシー、双対正則化、ネステロフの勾配降下双対という3つの要素の新たな統合によって提案される。
これは、凸制約を受ける全ての複雑性最適化に対して、非凸CMDP問題が$mathcal O (1/epsilon)$の低い境界に達する最初の実演である。
論文 参考訳(メタデータ) (2021-10-20T02:57:21Z) - Goal Seeking Quadratic Unconstrained Binary Optimization [0.5439020425819]
本稿では,目標からのずれを最小限に抑える2種類の目標探索QUBOを提案する。
本論文では、タブー探索に基づく1フリップによる目標からの偏差を最小限に抑える2種類の目標探索QUBOについて述べる。
論文 参考訳(メタデータ) (2021-03-24T03:03:13Z) - A Hybrid 2-stage Neural Optimization for Pareto Front Extraction [3.918940900258555]
最適なトレードオフソリューションに対する大きな障害は、それらが必ずしも互いに収束しないことです。
正確かつ費用対効果の高い二段階アプローチを提案する。
論文 参考訳(メタデータ) (2021-01-27T20:56:19Z) - Generalized and Scalable Optimal Sparse Decision Trees [56.35541305670828]
様々な目的に対して最適な決定木を生成する手法を提案する。
また,連続変数が存在する場合に最適な結果が得られるスケーラブルなアルゴリズムも導入する。
論文 参考訳(メタデータ) (2020-06-15T19:00:11Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
論文 参考訳(メタデータ) (2020-06-11T17:43:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。