論文の概要: Quantum-Assisted Machine Learning Models for Enhanced Weather Prediction
- arxiv url: http://arxiv.org/abs/2503.23408v1
- Date: Sun, 30 Mar 2025 12:03:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 19:35:57.106116
- Title: Quantum-Assisted Machine Learning Models for Enhanced Weather Prediction
- Title(参考訳): 気象予測のための量子支援機械学習モデル
- Authors: Saiyam Sakhuja, Shivanshu Siyanwal, Abhishek Tiwari, Britant, Savita Kashyap,
- Abstract要約: 量子機械学習(QML)は、予測モデリング能力を改善するために量子コンピューティングを使用することで、天気予報に対する革命的なアプローチとして提示される。
本研究では,量子ゲート型リカレントユニット(QGRU),量子ニューラルネットワーク(QNN),量子長短期記憶(QLSTM),変分量子回路(VQC),量子支援ベクトルマシン(QSVM)などのQMLモデルを適用する。
その結果、QMLモデルは予測と分類の両方において、特に二項分類において妥当な精度を達成できることを示した。
本研究は、天気予報・舗装におけるQMLの実現可能性に関する知見を提供する。
- 参考スコア(独自算出の注目度): 0.8458496687170665
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum Machine Learning (QML) presents as a revolutionary approach to weather forecasting by using quantum computing to improve predictive modeling capabilities. In this study, we apply QML models, including Quantum Gated Recurrent Units (QGRUs), Quantum Neural Networks (QNNs), Quantum Long Short-Term Memory(QLSTM), Variational Quantum Circuits(VQCs), and Quantum Support Vector Machines(QSVMs), to analyze meteorological time-series data from the ERA5 dataset. Our methodology includes preprocessing meteorological features, implementing QML architectures for both classification and regression tasks. The results demonstrate that QML models can achieve reasonable accuracy in both prediction and classification tasks, particularly in binary classification. However, challenges such as quantum hardware limitations and noise affect scalability and generalization. This research provides insights into the feasibility of QML for weather prediction, paving the way for further exploration of hybrid quantum-classical frameworks to enhance meteorological forecasting.
- Abstract(参考訳): 量子機械学習(QML)は、予測モデリング能力を改善するために量子コンピューティングを使用することで、天気予報に対する革命的なアプローチとして提示される。
本研究では,量子Gated Recurrent Units (QGRUs), Quantum Neural Networks (QNNs), Quantum Long Short-Term Memory (QLSTM), Variational Quantum Circuits (VQCs), Quantum Support Vector Machines (QSVMs)を含むQMLモデルを用いて,ERA5データセットからの気象時系列データを解析する。
本手法は,気象特性の事前処理,分類処理と回帰処理の両方にQMLアーキテクチャを実装することを含む。
その結果、QMLモデルは予測と分類の両方において、特に二項分類において妥当な精度を達成できることを示した。
しかし、量子ハードウェアの制限やノイズといった課題はスケーラビリティや一般化に影響を及ぼす。
本研究はQMLによる気象予報の実現可能性に関する知見を提供し、気象予報を強化するためのハイブリッド量子古典的フレームワークのさらなる探索の道を開くものである。
関連論文リスト
- Quantum Kernel-Based Long Short-term Memory for Climate Time-Series Forecasting [0.24739484546803336]
本稿では,量子カーネル法を従来のLSTMアーキテクチャに統合したQK-LSTM(Quantum Kernel-Based Long short-Memory)ネットワークを提案する。
QK-LSTMは、トレーニング可能なパラメータが少ない複雑な非線形依存と時間ダイナミクスをキャプチャする。
論文 参考訳(メタデータ) (2024-12-12T01:16:52Z) - Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
我々は、事前学習されたニューラルネットワークを用いて変分量子回路(VQC)を強化する革新的なアプローチを導入する。
この手法は近似誤差をキュービット数から効果的に分離し、制約条件の必要性を除去する。
我々の結果はヒトゲノム解析などの応用にまで拡張され、我々のアプローチの幅広い適用性を示している。
論文 参考訳(メタデータ) (2024-11-13T12:03:39Z) - Learning to Program Variational Quantum Circuits with Fast Weights [3.6881738506505988]
本稿では,時間的あるいはシーケンシャルな学習課題に対する解決法として,QFWP(Quantum Fast Weight Programmers)を提案する。
提案したQFWPモデルは、量子リカレントニューラルネットワークの使用を必要とせずに、時間的依存関係の学習を実現する。
本研究では, 時系列予測とRLタスクにおいて, 提案したQFWPモデルの有効性を示す数値シミュレーションを行った。
論文 参考訳(メタデータ) (2024-02-27T18:53:18Z) - Federated Quantum Long Short-term Memory (FedQLSTM) [58.50321380769256]
量子フェデレーション学習(QFL)は、量子機械学習(QML)モデルを使用して、複数のクライアント間の協調学習を容易にする。
関数の近似に時間的データを利用するQFLフレームワークの開発に前向きな作業は行われていない。
量子長短期メモリ(QLSTM)モデルと時間データを統合する新しいQFLフレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-21T21:40:47Z) - QKSAN: A Quantum Kernel Self-Attention Network [53.96779043113156]
量子カーネル法(Quantum Kernel Methods, QKM)のデータ表現能力とSAMの効率的な情報抽出能力を組み合わせた量子カーネル自己認識機構(Quantum Kernel Self-Attention Mechanism, QKSAM)を導入する。
量子カーネル自己保持ネットワーク(QKSAN)フレームワークは,DMP(Dederred Measurement Principle)と条件測定技術を巧みに組み込んだQKSAMに基づいて提案されている。
4つのQKSANサブモデルはPennyLaneとIBM Qiskitプラットフォームにデプロイされ、MNISTとFashion MNISTのバイナリ分類を実行する。
論文 参考訳(メタデータ) (2023-08-25T15:08:19Z) - Pre-training Tensor-Train Networks Facilitates Machine Learning with Variational Quantum Circuits [70.97518416003358]
変分量子回路(VQC)は、ノイズの多い中間スケール量子(NISQ)デバイス上での量子機械学習を約束する。
テンソルトレインネットワーク(TTN)はVQC表現と一般化を向上させることができるが、結果として得られるハイブリッドモデルであるTTN-VQCは、Polyak-Lojasiewicz(PL)条件による最適化の課題に直面している。
この課題を軽減するために,プレトレーニングTTNモデルとVQCを組み合わせたPre+TTN-VQCを導入する。
論文 参考訳(メタデータ) (2023-05-18T03:08:18Z) - Quantum Imitation Learning [74.15588381240795]
本稿では、量子優位性を利用してILを高速化する量子模倣学習(QIL)を提案する。
量子行動クローニング(Q-BC)と量子生成逆模倣学習(Q-GAIL)という2つのQILアルゴリズムを開発した。
実験結果から,Q-BCとQ-GAILの両者が,従来のものと同等の性能を達成できることが判明した。
論文 参考訳(メタデータ) (2023-04-04T12:47:35Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - QSAN: A Near-term Achievable Quantum Self-Attention Network [73.15524926159702]
SAM(Self-Attention Mechanism)は機能の内部接続を捉えるのに長けている。
短期量子デバイスにおける画像分類タスクに対して,新しい量子自己注意ネットワーク(QSAN)を提案する。
論文 参考訳(メタデータ) (2022-07-14T12:22:51Z) - Study of Feature Importance for Quantum Machine Learning Models [0.0]
予測器の重要性は、古典的および量子機械学習(QML)におけるデータ前処理パイプラインの重要な部分である
この研究は、QMLモデルの特徴的重要性を探求し、彼らの古典的機械学習(CML)と対比した最初の研究である。
我々はQMLモデルを訓練し、実世界のデータセット上で古典的アルゴリズムから特徴的重要度を計算するハイブリッド量子古典的アーキテクチャを開発した。
論文 参考訳(メタデータ) (2022-02-18T15:21:47Z) - Subtleties in the trainability of quantum machine learning models [0.0]
本稿では,変分量子アルゴリズムの勾配スケーリング結果を用いて,量子機械学習モデルの勾配スケーリングについて検討する。
以上の結果から,VQAトレーサビリティの低下がQMLのバレンプラトーなどの問題を引き起こす可能性が示唆された。
論文 参考訳(メタデータ) (2021-10-27T20:28:53Z) - Structural risk minimization for quantum linear classifiers [0.0]
qml(quantum machine learning)は、量子コンピューティングの短期的"キラーアプリケーション"の典型的な候補の1つとして注目される。
明示的および暗黙的量子線形分類器と呼ばれる2つの密接に関連したQMLモデルの容量測定を研究する。
我々は,QMLモデルで使用される観測値のランクとフロベニウスノルムが,モデルのキャパシティを密接に制御していることを確認した。
論文 参考訳(メタデータ) (2021-05-12T10:39:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。