Multiview Image-Based Localization
- URL: http://arxiv.org/abs/2503.23577v1
- Date: Sun, 30 Mar 2025 20:00:31 GMT
- Title: Multiview Image-Based Localization
- Authors: Cameron Fiore, Hongyi Fan, Benjamin Kimia,
- Abstract summary: This paper represents a hybrid approach that stores only image features in the database like some IR methods.<n>It relies on a latent 3D reconstruction, like 3D methods but without retaining a 3D scene reconstruction.<n>Our approach shows improved performance on the 7-Scenes and Cambridge Landmarks datasets while also improving on timing and memory footprint as compared to state-of-the-art.
- Score: 2.594420805049218
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The image retrieval (IR) approach to image localization has distinct advantages to the 3D and the deep learning (DNN) approaches: it is seen-agnostic, simpler to implement and use, has no privacy issues, and is computationally efficient. The main drawback of this approach is relatively poor localization in both position and orientation of the query camera when compared to the competing approaches. This paper represents a hybrid approach that stores only image features in the database like some IR methods, but relies on a latent 3D reconstruction, like 3D methods but without retaining a 3D scene reconstruction. The approach is based on two ideas: {\em (i)} a novel proposal where query camera center estimation relies only on relative translation estimates but not relative rotation estimates through a decoupling of the two, and {\em (ii)} a shift from computing optimal pose from estimated relative pose to computing optimal pose from multiview correspondences, thus cutting out the ``middle-man''. Our approach shows improved performance on the 7-Scenes and Cambridge Landmarks datasets while also improving on timing and memory footprint as compared to state-of-the-art.
Related papers
- A Guide to Structureless Visual Localization [63.41481414949785]
Methods that estimate the camera pose of a query image in a known scene are core components of many applications, including self-driving cars and augmented / mixed reality systems.
State-of-the-art visual localization algorithms are structure-based, i.e., they store a 3D model of the scene and use 2D-3D correspondences between the query image and 3D points in the model for camera pose estimation.
This paper is dedicated to providing, to the best of our knowledge, first comprehensive discussion and comparison of structureless methods.
arXiv Detail & Related papers (2025-04-24T15:08:36Z) - No Pose, No Problem: Surprisingly Simple 3D Gaussian Splats from Sparse Unposed Images [100.80376573969045]
NoPoSplat is a feed-forward model capable of reconstructing 3D scenes parameterized by 3D Gaussians from multi-view images.
Our model achieves real-time 3D Gaussian reconstruction during inference.
This work makes significant advances in pose-free generalizable 3D reconstruction and demonstrates its applicability to real-world scenarios.
arXiv Detail & Related papers (2024-10-31T17:58:22Z) - FaVoR: Features via Voxel Rendering for Camera Relocalization [23.7893950095252]
Camera relocalization methods range from dense image alignment to direct camera pose regression from a query image.<n>We propose a novel approach that leverages a globally sparse yet locally dense 3D representation of 2D features.<n>By tracking and triangulating landmarks over a sequence of frames, we construct a sparse voxel map optimized to render image patch descriptors observed during tracking.
arXiv Detail & Related papers (2024-09-11T18:58:16Z) - CheckerPose: Progressive Dense Keypoint Localization for Object Pose
Estimation with Graph Neural Network [66.24726878647543]
Estimating the 6-DoF pose of a rigid object from a single RGB image is a crucial yet challenging task.
Recent studies have shown the great potential of dense correspondence-based solutions.
We propose a novel pose estimation algorithm named CheckerPose, which improves on three main aspects.
arXiv Detail & Related papers (2023-03-29T17:30:53Z) - LFM-3D: Learnable Feature Matching Across Wide Baselines Using 3D
Signals [9.201550006194994]
Learnable matchers often underperform when there exists only small regions of co-visibility between image pairs.
We propose LFM-3D, a Learnable Feature Matching framework that uses models based on graph neural networks.
We show that the resulting improved correspondences lead to much higher relative posing accuracy for in-the-wild image pairs.
arXiv Detail & Related papers (2023-03-22T17:46:27Z) - FvOR: Robust Joint Shape and Pose Optimization for Few-view Object
Reconstruction [37.81077373162092]
Reconstructing an accurate 3D object model from a few image observations remains a challenging problem in computer vision.
We present FvOR, a learning-based object reconstruction method that predicts accurate 3D models given a few images with noisy input poses.
arXiv Detail & Related papers (2022-05-16T15:39:27Z) - ImPosIng: Implicit Pose Encoding for Efficient Camera Pose Estimation [2.6808541153140077]
Implicit Pose.
(ImPosing) embeds images and camera poses into a common latent representation with 2 separate neural networks.
By evaluating candidates through the latent space in a hierarchical manner, the camera position and orientation are not directly regressed but refined.
arXiv Detail & Related papers (2022-05-05T13:33:25Z) - Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo [71.59494156155309]
Existing approaches for multi-view 3D pose estimation explicitly establish cross-view correspondences to group 2D pose detections from multiple camera views.
We present our multi-view 3D pose estimation approach based on plane sweep stereo to jointly address the cross-view fusion and 3D pose reconstruction in a single shot.
arXiv Detail & Related papers (2021-04-06T03:49:35Z) - Lightweight Multi-View 3D Pose Estimation through Camera-Disentangled
Representation [57.11299763566534]
We present a solution to recover 3D pose from multi-view images captured with spatially calibrated cameras.
We exploit 3D geometry to fuse input images into a unified latent representation of pose, which is disentangled from camera view-points.
Our architecture then conditions the learned representation on camera projection operators to produce accurate per-view 2d detections.
arXiv Detail & Related papers (2020-04-05T12:52:29Z) - Robust 6D Object Pose Estimation by Learning RGB-D Features [59.580366107770764]
We propose a novel discrete-continuous formulation for rotation regression to resolve this local-optimum problem.
We uniformly sample rotation anchors in SO(3), and predict a constrained deviation from each anchor to the target, as well as uncertainty scores for selecting the best prediction.
Experiments on two benchmarks: LINEMOD and YCB-Video, show that the proposed method outperforms state-of-the-art approaches.
arXiv Detail & Related papers (2020-02-29T06:24:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.