DiffScale: Continuous Downscaling and Bias Correction of Subseasonal Wind Speed Forecasts using Diffusion Models
- URL: http://arxiv.org/abs/2503.23893v1
- Date: Mon, 31 Mar 2025 09:44:28 GMT
- Title: DiffScale: Continuous Downscaling and Bias Correction of Subseasonal Wind Speed Forecasts using Diffusion Models
- Authors: Maximilian Springenberg, Noelia Otero, Yuxin Xue, Jackie Ma,
- Abstract summary: Subseasonal to seasonal (S2S) forecasts can offer significant socioeconomic advantages to the energy sector.<n>We propose DiffScale, a diffusion model that super-resolves spatial information for continuous downscaling factors and lead times.<n>We achieve a significant improvement in prediction quality, outperforming baselines up to week 3.
- Score: 0.27104259437944106
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Renewable resources are strongly dependent on local and large-scale weather situations. Skillful subseasonal to seasonal (S2S) forecasts -- beyond two weeks and up to two months -- can offer significant socioeconomic advantages to the energy sector. This study aims to enhance wind speed predictions using a diffusion model with classifier-free guidance to downscale S2S forecasts of surface wind speed. We propose DiffScale, a diffusion model that super-resolves spatial information for continuous downscaling factors and lead times. Leveraging weather priors as guidance for the generative process of diffusion models, we adopt the perspective of conditional probabilities on sampling super-resolved S2S forecasts. We aim to directly estimate the density associated with the target S2S forecasts at different spatial resolutions and lead times without auto-regression or sequence prediction, resulting in an efficient and flexible model. Synthetic experiments were designed to super-resolve wind speed S2S forecasts from the European Center for Medium-Range Weather Forecast (ECMWF) from a coarse resolution to a finer resolution of ERA5 reanalysis data, which serves as a high-resolution target. The innovative aspect of DiffScale lies in its flexibility to downscale arbitrary scaling factors, enabling it to generalize across various grid resolutions and lead times -without retraining the model- while correcting model errors, making it a versatile tool for improving S2S wind speed forecasts. We achieve a significant improvement in prediction quality, outperforming baselines up to week 3.
Related papers
- Deep Learning Meets Teleconnections: Improving S2S Predictions for European Winter Weather [2.3440344026824125]
Predictions on subseasonal-to-seasonal timescales range from two weeks to two month.
Teleconnections, such as the stratospheric polar vortex (SPV) and Madden-Julian Oscillation (MJO) offer windows of enhanced predictability.
We developed and evaluated deep learning architectures to predict North Atlantic-European weather regimes.
arXiv Detail & Related papers (2025-04-10T10:23:07Z) - Improving sub-seasonal wind-speed forecasts in Europe with a non-linear model [0.0]
This study explores the potential of leveraging non-linear relationships between 500 hPa geopotential height (Z500) and surface wind speed to improve subs-seasonal wind speed forecasting skills in Europe.<n>Our proposed framework uses a Multiple Linear Regression (MLR) or a Convolutional Neural Network (CNN) to regress surface wind speed from Z500.
arXiv Detail & Related papers (2024-11-28T11:53:59Z) - FengWu-W2S: A deep learning model for seamless weather-to-subseasonal forecast of global atmosphere [53.22497376154084]
We propose FengWu-Weather to Subseasonal (FengWu-W2S), which builds on the FengWu global weather forecast model and incorporates an ocean-atmosphere-land coupling structure along with a diverse perturbation strategy.
Our hindcast results demonstrate that FengWu-W2S reliably predicts atmospheric conditions out to 3-6 weeks ahead, enhancing predictive capabilities for global surface air temperature, precipitation, geopotential height and intraseasonal signals such as the Madden-Julian Oscillation (MJO) and North Atlantic Oscillation (NAO)
Our ablation experiments on forecast error growth from daily to seasonal timescales reveal potential
arXiv Detail & Related papers (2024-11-15T13:44:37Z) - FuXi-2.0: Advancing machine learning weather forecasting model for practical applications [11.50902060124504]
FuXi-2.0 is an advanced machine learning model that delivers 1-hourly global weather forecasts and includes a comprehensive set of meteorological variables.
FuXi-2.0 consistently outperforms ECMWF HRES in forecasting key meteorological variables relevant to wind and solar energy, aviation, and marine shipping sectors.
FuXi-2.0 also integrates both atmospheric and oceanic components, representing a significant step forward in the development of coupled atmospheric-ocean models.
arXiv Detail & Related papers (2024-09-11T11:21:00Z) - FuXi-ENS: A machine learning model for medium-range ensemble weather forecasting [16.562512279873577]
We introduce FuXi-ENS, an advanced ML model designed to deliver 6-hourly global ensemble weather forecasts up to 15 days.
FuXi-ENS runs at a significantly increased spatial resolution of 0.25textdegree, incorporating 5 atmospheric variables at 13 pressure levels, along with 13 surface variables.
Results demonstrate that FuXi-ENS outperforms ensemble forecasts from the ECMWF, a world leading NWP model, in the CRPS of 98.1% of 360 variable and forecast lead time combinations.
arXiv Detail & Related papers (2024-05-09T17:15:09Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
We introduce a novel method that applies diffusion models (DM) for weather forecasting.
Our method can achieve both direct and iterative forecasting with the same modeling framework.
The flexibility and controllability of our model empowers a more trustworthy DL system for the general weather community.
arXiv Detail & Related papers (2024-02-06T21:28:42Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - Efficient Subseasonal Weather Forecast using Teleconnection-informed
Transformers [29.33938664834226]
Subseasonal forecasting is pivotal for agriculture, water resource management, and early warning of disasters.
Recent advances in machine learning have revolutionized weather forecasting by achieving competitive predictive skills to numerical models.
However, training such foundation models requires thousands of GPU days, which causes substantial carbon emissions.
arXiv Detail & Related papers (2024-01-31T14:27:35Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - FuXi-S2S: A machine learning model that outperforms conventional global subseasonal forecast models [13.852128658186876]
FuXi Subseasonal-to-Seasonal (FuXi-S2S) is a machine learning model that provides global daily mean forecasts up to 42 days.
FuXi-S2S, trained on 72 years of daily statistics from ECMWF ERA5 reanalysis data, outperforms the ECMWF's state-of-the-art Subseasonal-to-Seasonal model.
arXiv Detail & Related papers (2023-12-15T16:31:44Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.