論文の概要: Physics-informed neural networks for hidden boundary detection and flow field reconstruction
- arxiv url: http://arxiv.org/abs/2503.24074v1
- Date: Mon, 31 Mar 2025 13:30:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 14:32:31.983017
- Title: Physics-informed neural networks for hidden boundary detection and flow field reconstruction
- Title(参考訳): 隠れ境界検出と流れ場再構成のための物理インフォームニューラルネットワーク
- Authors: Yongzheng Zhu, Weizheng Chen, Jian Deng, Xin Bian,
- Abstract要約: 本研究では,静的あるいは運動する固体境界の存在,形状,運動を推定する物理インフォームドニューラルネットワーク(PINN)フレームワークを提案する。
このフレームワークは、圧縮不能なNavier-Stokesや圧縮可能なEulerフローなど、さまざまなシナリオで検証されている。
提案手法はロバスト性および汎用性を示し,実験データや数値データしか利用できない場合の応用の可能性を強調した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Simultaneously detecting hidden solid boundaries and reconstructing flow fields from sparse observations poses a significant inverse challenge in fluid mechanics. This study presents a physics-informed neural network (PINN) framework designed to infer the presence, shape, and motion of static or moving solid boundaries within a flow field. By integrating a body fraction parameter into the governing equations, the model enforces no-slip/no-penetration boundary conditions in solid regions while preserving conservation laws of fluid dynamics. Using partial flow field data, the method simultaneously reconstructs the unknown flow field and infers the body fraction distribution, thereby revealing solid boundaries. The framework is validated across diverse scenarios, including incompressible Navier-Stokes and compressible Euler flows, such as steady flow past a fixed cylinder, an inline oscillating cylinder, and subsonic flow over an airfoil. The results demonstrate accurate detection of hidden boundaries, reconstruction of missing flow data, and estimation of trajectories and velocities of a moving body. Further analysis examines the effects of data sparsity, velocity-only measurements, and noise on inference accuracy. The proposed method exhibits robustness and versatility, highlighting its potential for applications when only limited experimental or numerical data are available.
- Abstract(参考訳): 隠れた固体境界を同時に検出し、スパース観測から流れ場を再構築することは、流体力学において大きな逆問題を引き起こす。
本研究では,流れ場内における静的あるいは運動する固体境界の存在,形状,運動を推定する物理インフォームドニューラルネットワーク(PINN)フレームワークを提案する。
ボディー分数パラメータを支配方程式に統合することにより、流体力学の保存則を保ちながら、固体領域におけるノースリップ/ノー・ペネレーション境界条件を強制する。
部分流れ場データを用いて、未知の流れ場を同時に再構成し、身体分数分布を推定することにより、固体境界を明らかにする。
この枠組みは、圧縮不能なナビエ・ストークや固定シリンダーを過ぎる安定した流れ、インライン振動シリンダー、翼の上の亜音速流れなど、様々なシナリオで検証されている。
その結果, 隠れた境界の正確な検出, 流れデータの復元, 移動体の軌道と速度の推定が得られた。
さらなる分析では、データ間隔、速度のみの測定、ノイズが推測精度に与える影響について調べる。
提案手法はロバスト性および汎用性を示し,実験データや数値データしか利用できない場合の応用の可能性を強調した。
関連論文リスト
- VortexViz: Finding Vortex Boundaries by Learning from Particle Trajectories [2.96658114892031]
渦は様々な科学分野において研究され、流体の挙動に関する洞察を提供する。
渦の境界を可視化することは、流れの現象を理解し、流れの不規則を検出するために重要である。
本稿では,深層学習技術を用いて渦境界を正確に抽出することの課題に対処する。
論文 参考訳(メタデータ) (2024-04-01T05:12:55Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
軌道予測は、観測されたシーケンスから実体運動や人間の行動を理解する上で重要な作業である。
現在の方法では、観測されたシーケンスが完了したと仮定し、欠落した値の可能性を無視する。
本稿では,グラフに基づく条件変動リカレントニューラルネットワーク (GC-VRNN) の統一フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-28T14:27:27Z) - Forecasting subcritical cylinder wakes with Fourier Neural Operators [58.68996255635669]
実験によって測定された速度場の時間的変化を予測するために,最先端の演算子学習手法を適用した。
その結果、FNOはレイノルズ数の範囲で実験速度場の進化を正確に予測できることがわかった。
論文 参考訳(メタデータ) (2023-01-19T20:04:36Z) - Learning to Estimate and Refine Fluid Motion with Physical Dynamics [9.258258917049845]
流体流量推定のための教師なし学習に基づく予測補正手法を提案する。
推定はまずPDE制約の光フロー予測器によって与えられ、次に物理ベースの補正器によって洗練される。
提案手法は,地上の真理情報が効果的に理解できない複雑な実世界の流体シナリオに一般化することができる。
論文 参考訳(メタデータ) (2022-06-21T15:46:49Z) - Physics Informed Neural Fields for Smoke Reconstruction with Sparse Data [73.8970871148949]
まばらなマルチビューRGBビデオから流体を高忠実に再現することは、まだまだ難しい課題だ。
既存のソリューションは、障害物や照明に関する知識を前提とするか、障害物や複雑な照明のない単純な流体シーンのみに焦点を当てる。
本稿では, 制御物理(Navier-Stokes方程式)をエンドツーエンドの最適化で活用することにより, 動的流体を再構築する最初の方法を提案する。
論文 参考訳(メタデータ) (2022-06-14T03:38:08Z) - NeuroFluid: Fluid Dynamics Grounding with Particle-Driven Neural
Radiance Fields [65.07940731309856]
深層学習は流体のような複雑な粒子系の物理力学をモデル化する大きな可能性を示している。
本稿では,流体力学グラウンドリング(fluid dynamics grounding)として知られる,部分的に観測可能なシナリオについて考察する。
我々はNeuroFluidという2段階の異なるネットワークを提案する。
初期形状、粘度、密度が異なる流体の基礎物理学を合理的に推定することが示されている。
論文 参考訳(メタデータ) (2022-03-03T15:13:29Z) - Simultaneous boundary shape estimation and velocity field de-noising in
Magnetic Resonance Velocimetry using Physics-informed Neural Networks [70.7321040534471]
MRV(MR resonance velocimetry)は、流体の速度場を測定するために医療や工学で広く用いられている非侵襲的な技術である。
これまでの研究では、境界(例えば血管)の形状が先駆体として知られていた。
我々は、ノイズの多いMRVデータのみを用いて、最も可能性の高い境界形状と減音速度場を推定する物理インフォームニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2021-07-16T12:56:09Z) - A Framework for Fluid Motion Estimation using a Constraint-Based
Refinement Approach [0.0]
制約に基づく精錬手法を用いて流体運動推定のための一般的な枠組みを定式化する。
この結果から, 流体流動の古典的連続性方程式に基づく近似式が得られた。
また、系を対角化するコーシー・リーマン作用素との驚くべき関係を観察し、流れの発散と曲率を含む拡散現象を導いた。
論文 参考訳(メタデータ) (2020-11-24T18:23:39Z) - A Point-Cloud Deep Learning Framework for Prediction of Fluid Flow
Fields on Irregular Geometries [62.28265459308354]
ネットワークは空間位置とCFD量のエンドツーエンドマッピングを学習する。
断面形状の異なるシリンダーを過ぎる非圧縮層状定常流を考察する。
ネットワークは従来のCFDの数百倍の速さで流れ場を予測する。
論文 参考訳(メタデータ) (2020-10-15T12:15:02Z) - Deep Learning Interfacial Momentum Closures in Coarse-Mesh CFD Two-Phase
Flow Simulation Using Validation Data [5.099083753474628]
FSM(Feature-Similarity Measurement)を開発し, 粗面CFD法により二相流のシミュレーション性能を向上させる。
FSMは界面閉鎖の選択に関係なく粗いメッシュCFDモデルの予測を大幅に改善することができる。
論文 参考訳(メタデータ) (2020-05-07T21:25:22Z) - ML-LBM: Machine Learning Aided Flow Simulation in Porous Media [0.0]
多孔質媒質内の流体流動の直接シミュレーションは、合理的な時間枠で解くために重要な計算資源を必要とする。
流体流の予測と直接流シミュレーションを組み合わせた統合手法について概説する。
畳み込みニューラルネットワーク(CNN)に基づくディープラーニング技術により,定常速度場を正確に推定できることが示されている。
論文 参考訳(メタデータ) (2020-04-22T01:55:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。