論文の概要: VortexViz: Finding Vortex Boundaries by Learning from Particle Trajectories
- arxiv url: http://arxiv.org/abs/2404.01352v1
- Date: Mon, 1 Apr 2024 05:12:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-03 20:56:59.868477
- Title: VortexViz: Finding Vortex Boundaries by Learning from Particle Trajectories
- Title(参考訳): VortexViz:粒子軌道からの学習による渦境界の探索
- Authors: Akila de Silva, Nicholas Tee, Omkar Ghanekar, Fahim Hasan Khan, Gregory Dusek, James Davis, Alex Pang,
- Abstract要約: 渦は様々な科学分野において研究され、流体の挙動に関する洞察を提供する。
渦の境界を可視化することは、流れの現象を理解し、流れの不規則を検出するために重要である。
本稿では,深層学習技術を用いて渦境界を正確に抽出することの課題に対処する。
- 参考スコア(独自算出の注目度): 2.96658114892031
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Vortices are studied in various scientific disciplines, offering insights into fluid flow behavior. Visualizing the boundary of vortices is crucial for understanding flow phenomena and detecting flow irregularities. This paper addresses the challenge of accurately extracting vortex boundaries using deep learning techniques. While existing methods primarily train on velocity components, we propose a novel approach incorporating particle trajectories (streamlines or pathlines) into the learning process. By leveraging the regional/local characteristics of the flow field captured by streamlines or pathlines, our methodology aims to enhance the accuracy of vortex boundary extraction.
- Abstract(参考訳): 渦は様々な科学分野において研究され、流体の挙動に関する洞察を提供する。
渦の境界を可視化することは、流れの現象を理解し、流れの不規則を検出するために重要である。
本稿では,深層学習技術を用いて渦境界を正確に抽出することの課題に対処する。
既存の手法は主に速度成分を学習するが,学習プロセスに粒子軌道(流路や経路)を取り入れた新しい手法を提案する。
流路や流路によって捕捉された流れ場の局所的・局所的特性を利用して,渦境界抽出の精度を高めることを目的とする。
関連論文リスト
- Optimal Flow Matching: Learning Straight Trajectories in Just One Step [89.37027530300617]
我々は,新しいtextbf Optimal Flow Matching (OFM) アプローチを開発し,理論的に正当化する。
これは2次輸送のための直列のOT変位をFMの1ステップで回復することを可能にする。
提案手法の主な考え方は,凸関数によってパラメータ化されるFMのベクトル場の利用である。
論文 参考訳(メタデータ) (2024-03-19T19:44:54Z) - Vision-Informed Flow Image Super-Resolution with Quaternion Spatial
Modeling and Dynamic Flow Convolution [49.45309818782329]
フロー画像超解像(FISR)は、低分解能フロー画像から高分解能乱流速度場を復元することを目的としている。
既存のFISR法は主に自然画像パターンのフロー画像を処理する。
第一流れの視覚特性インフォームドFISRアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-01-29T06:48:16Z) - Gaussian Interpolation Flows [11.340847429991525]
本研究は,ガウス分極上に構築されたシミュレーションフリー連続正規化流れの健全性について検討する。
我々は,流れ速度場のリプシッツ正則性,流れの存在と特異性,流れマップの連続性を確立する。
また、2次ワッサーシュタイン距離を計量として、これらの流れの震源分布と速度場の摂動の安定性についても検討した。
論文 参考訳(メタデータ) (2023-11-20T00:59:20Z) - Forward Flow for Novel View Synthesis of Dynamic Scenes [97.97012116793964]
本稿では,前向きワープを用いた動的シーンの新たなビュー合成のためのニューラルラジアンス場(NeRF)アプローチを提案する。
本手法は、新しいビューレンダリングとモーションモデリングの両方において、既存の手法よりも優れている。
論文 参考訳(メタデータ) (2023-09-29T16:51:06Z) - Real-space detection and manipulation of topological edge modes with
ultracold atoms [56.34005280792013]
光学格子におけるキラルエッジモードを実現するための実験的プロトコルを実証する。
3つの異なるフロケトポロジカルな状態において,これらのエッジモードの粒子を効率的に調製する方法を示す。
本研究では, 界面にエッジモードが出現し, 電位ステップのシャープネスが変化するにつれて, 粒子の群速度がどう変化するかを検討する。
論文 参考訳(メタデータ) (2023-04-04T17:36:30Z) - A Level Set Theory for Neural Implicit Evolution under Explicit Flows [102.18622466770114]
暗黙の曲面をパラメータ化するコーディネートベースのニューラルネットワークは、幾何学の効率的な表現として登場した。
このような暗黙の面に三角形メッシュに対して定義された変形操作を適用することができるフレームワークを提案する。
提案手法は, 表面平滑化, 平均曲率流, 逆レンダリング, 暗黙的幾何によるユーザ定義編集など, 応用性の向上を示す。
論文 参考訳(メタデータ) (2022-04-14T17:59:39Z) - A Framework for Fluid Motion Estimation using a Constraint-Based
Refinement Approach [0.0]
制約に基づく精錬手法を用いて流体運動推定のための一般的な枠組みを定式化する。
この結果から, 流体流動の古典的連続性方程式に基づく近似式が得られた。
また、系を対角化するコーシー・リーマン作用素との驚くべき関係を観察し、流れの発散と曲率を含む拡散現象を導いた。
論文 参考訳(メタデータ) (2020-11-24T18:23:39Z) - Flow-edge Guided Video Completion [66.49077223104533]
従来のフローコンプリート法は、しばしば運動境界のシャープさを維持することができない。
提案手法は,まず動きエッジを抽出し,その後,鋭いエッジで平滑な流れ完了を導出する。
論文 参考訳(メタデータ) (2020-09-03T17:59:42Z) - Neural Vortex Method: from Finite Lagrangian Particles to Infinite
Dimensional Eulerian Dynamics [16.563723810812807]
ニューラル渦法(Neural Vortex Method, NVM)を提案する。
NVMはラグランジアン渦構造とその相互作用力学をニューラルネットワークで記述する。
これら2つのネットワークを渦対速度ポアソン解法で埋め込むことで、正確な流体力学を予測できる。
論文 参考訳(メタデータ) (2020-06-07T15:12:25Z) - AdvectiveNet: An Eulerian-Lagrangian Fluidic reservoir for Point Cloud
Processing [14.160687527074858]
本稿では,流体力学における自然流現象を動機とした点雲処理のための物理に着想を得たディープラーニング手法を提案する。
我々の学習アーキテクチャは、静的背景格子とラグランジアン物質空間を用いて、移動粒子を用いてユーレリア世界のデータを共同で定義する。
本研究では,様々なポイントクラウドの分類とセグメンテーション問題を最先端性能で解くことで,本システムの有効性を実証する。
論文 参考訳(メタデータ) (2020-02-01T01:21:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。