論文の概要: Riemannian Optimization on the Oblique Manifold for Sparse Simplex Constraints via Multiplicative Updates
- arxiv url: http://arxiv.org/abs/2503.24075v2
- Date: Wed, 21 May 2025 13:54:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-22 18:05:36.067855
- Title: Riemannian Optimization on the Oblique Manifold for Sparse Simplex Constraints via Multiplicative Updates
- Title(参考訳): 多重更新によるスパース単純性制約に対する斜め多様体のリーマン最適化
- Authors: Flavia Esposito, Andersen Ang,
- Abstract要約: スパース単純性制約による低ランク最適化問題は、非負性、疎性、一対一条件を満たさなければならない変数を含む。
本稿では,これらの問題に効率的に対処するための新しい多様体最適化手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Low-rank optimization problems with sparse simplex constraints involve variables that must satisfy nonnegativity, sparsity, and sum-to-one conditions, making their optimization particularly challenging due to the interplay between low-rank structures and constraints. These problems arise in various applications, including machine learning, signal processing, environmental fields, and computational biology. In this paper, we propose a novel manifold optimization approach to tackle these problems efficiently. Our method leverages the geometry of oblique rotation manifolds to reformulate the problem and introduces a new Riemannian optimization method based on Riemannian gradient descent that strictly maintains the simplex constraints. By exploiting the underlying manifold structure, our approach improves optimization efficiency. Experiments on synthetic datasets compared to standard Euclidean and Riemannian methods show the effectiveness of the proposed method.
- Abstract(参考訳): スパース単純性制約による低ランク最適化問題は、非負性、疎性、一対一条件を満たさなければならない変数を含んでおり、低ランク構造と制約の間の相互作用のため、その最適化は特に困難である。
これらの問題は、機械学習、信号処理、環境分野、計算生物学など、様々な応用に現れる。
本稿では,これらの問題を効率的に解くための新しい多様体最適化手法を提案する。
この手法は、斜め回転多様体の幾何学を利用して問題を再構成し、単純制約を厳密に維持するリーマン勾配勾配に基づく新しいリーマン最適化法を導入する。
基礎となる多様体構造を利用することにより,最適化効率が向上する。
標準ユークリッド法やリーマン法と比較した合成データセットの実験は,提案手法の有効性を示した。
関連論文リスト
- Riemannian Optimization on Relaxed Indicator Matrix Manifold [83.13494760649874]
インジケータ行列は機械学習において重要な役割を果たすが、最適化はNPハード問題である。
我々は、指標行列の新たな緩和を提案し、この緩和が多様体を形成することを証明し、それをRelaxed Indicator Matrix Manifold (RIM manifold) と呼ぶ。
測地学を得るための高速な測地法を含む,いくつかのリトラクション法を提案する。
論文 参考訳(メタデータ) (2025-03-26T12:45:52Z) - Implicit Riemannian Optimism with Applications to Min-Max Problems [23.421903887404618]
本稿では,アダマール問題に対する楽観的なオンライン学習アルゴリズムを提案する。
提案手法は, マニフォールド制約を処理し, ユークリッド設定上の最もよく知られた境界値に適合する。
論文 参考訳(メタデータ) (2025-01-30T14:31:28Z) - Symplectic Stiefel manifold: tractable metrics, second-order geometry and Newton's methods [1.190653833745802]
我々は、シンプレクティック・スティーフェル多様体上の明示的な二階幾何学とニュートンの方法を開発する。
次にニュートン方程式をニュートン法の中心的なステップとして解く。
提案手法を検証するために, 種々の数値実験を行った。
論文 参考訳(メタデータ) (2024-06-20T13:26:06Z) - FORML: A Riemannian Hessian-free Method for Meta-learning on Stiefel Manifolds [4.757859522106933]
本稿では、スティーフェル多様体上の微分の1次近似を用いたヘッセンフリーアプローチを提案する。
本手法は計算負荷とメモリフットプリントを大幅に削減する。
論文 参考訳(メタデータ) (2024-02-28T10:57:30Z) - Improving Diffusion Models for Inverse Problems Using Optimal Posterior Covariance [52.093434664236014]
近年の拡散モデルは、特定の逆問題に対して再訓練することなく、ノイズの多い線形逆問題に対する有望なゼロショット解を提供する。
この発見に触発されて、我々は、最大推定値から決定されるより原理化された共分散を用いて、最近の手法を改善することを提案する。
論文 参考訳(メタデータ) (2024-02-03T13:35:39Z) - Riemannian stochastic optimization methods avoid strict saddle points [68.80251170757647]
研究中のポリシーは、確率 1 の厳密なサドル点/部分多様体を避けていることを示す。
この結果は、アルゴリズムの極限状態が局所最小値にしかならないことを示すため、重要な正当性チェックを提供する。
論文 参考訳(メタデータ) (2023-11-04T11:12:24Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
本稿では,完全合成最適化問題を凸コンパクト集合で解くための一階アルゴリズムについて検討する。
微分可能および非微分可能を別々に扱い、滑らかな部分のみを線形化することで目的の構造を利用する。
論文 参考訳(メタデータ) (2023-02-24T18:41:48Z) - Simplifying Momentum-based Positive-definite Submanifold Optimization
with Applications to Deep Learning [24.97120654216651]
部分多様体上の運動量を持つ難しい微分方程式の解法を示す。
我々はリーマン正規座標の一般化版を提案する。
我々は,行列乗算のみを用いることで,構造化共分散の既存手法を単純化し,低精度のディープラーニングのための行列非逆2textnd$ordersを開発する。
論文 参考訳(メタデータ) (2023-02-20T03:31:11Z) - Riemannian Optimization for Variance Estimation in Linear Mixed Models [0.0]
パラメータ空間の内在的幾何を利用した線形混合モデルにおけるパラメータ推定について、全く新しい見方をとる。
提案手法は,既存手法に比べて分散パラメータ推定精度が高い。
論文 参考訳(メタデータ) (2022-12-18T13:08:45Z) - On Riemannian Approach for Constrained Optimization Model in Extreme
Classification Problems [2.7436792484073638]
制約付き最適化問題は行列多様体上の最適化問題として定式化される。
提案手法は,複数の実世界の大規模マルチラベルデータセットで検証される。
論文 参考訳(メタデータ) (2021-09-30T11:28:35Z) - Optimization on manifolds: A symplectic approach [127.54402681305629]
本稿では、最適化問題を解くための一般的な枠組みとして、ディラックの制約付きハミルトン系理論の散逸拡張を提案する。
我々の(加速された)アルゴリズムのクラスは単純で効率的なだけでなく、幅広い文脈にも適用できる。
論文 参考訳(メタデータ) (2021-07-23T13:43:34Z) - Conditional gradient methods for stochastically constrained convex
minimization [54.53786593679331]
構造凸最適化問題に対する条件勾配に基づく2つの新しい解法を提案する。
私たちのフレームワークの最も重要な特徴は、各イテレーションで制約のサブセットだけが処理されることです。
提案アルゴリズムは, 条件勾配のステップとともに, 分散の低減と平滑化に頼り, 厳密な収束保証を伴っている。
論文 参考訳(メタデータ) (2020-07-07T21:26:35Z) - Support recovery and sup-norm convergence rates for sparse pivotal
estimation [79.13844065776928]
高次元スパース回帰では、ピボット推定器は最適な正規化パラメータがノイズレベルに依存しない推定器である。
非滑らかで滑らかな単一タスクとマルチタスク正方形ラッソ型推定器に対するミニマックス超ノルム収束率を示す。
論文 参考訳(メタデータ) (2020-01-15T16:11:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。