論文の概要: Diffusion models applied to skin and oral cancer classification
- arxiv url: http://arxiv.org/abs/2504.00026v1
- Date: Fri, 28 Mar 2025 20:29:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 15:43:08.334482
- Title: Diffusion models applied to skin and oral cancer classification
- Title(参考訳): 皮膚・口腔癌分類における拡散モデルの適用
- Authors: José J. M. Uliana, Renato A. Krohling,
- Abstract要約: 医用画像分類(DiffMIC)における拡散モデルの適用について検討する。
このモデルは、CNNやTransformersのような最先端のディープラーニングモデルと比較して、競争力のある性能を示した。
以上の結果から,拡散モデルが皮膚および口腔病変の医用画像の分類に有効なモデルであることが示唆された。
- 参考スコア(独自算出の注目度): 1.8416014644193066
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study investigates the application of diffusion models in medical image classification (DiffMIC), focusing on skin and oral lesions. Utilizing the datasets PAD-UFES-20 for skin cancer and P-NDB-UFES for oral cancer, the diffusion model demonstrated competitive performance compared to state-of-the-art deep learning models like Convolutional Neural Networks (CNNs) and Transformers. Specifically, for the PAD-UFES-20 dataset, the model achieved a balanced accuracy of 0.6457 for six-class classification and 0.8357 for binary classification (cancer vs. non-cancer). For the P-NDB-UFES dataset, it attained a balanced accuracy of 0.9050. These results suggest that diffusion models are viable models for classifying medical images of skin and oral lesions. In addition, we investigate the robustness of the model trained on PAD-UFES-20 for skin cancer but tested on the clinical images of the HIBA dataset.
- Abstract(参考訳): 本研究では,皮膚および口腔病変に着目した拡散モデルの医療画像分類(DiffMIC)への応用について検討した。
皮膚がんのためのデータセットPAD-UFES-20と口腔がんのためのP-NDB-UFESを使用して、拡散モデルは、畳み込みニューラルネットワーク(CNN)やトランスフォーマーのような最先端のディープラーニングモデルと比較して、競争力のある性能を示した。
具体的には、PAD-UFES-20データセットでは、6クラス分類では0.6457、バイナリ分類では0.8357というバランスの取れた精度を達成した。
P-NDB-UFESデータセットでは、バランスの取れた精度は0.9050に達した。
これらの結果から,皮膚および口腔病変の医用画像の分類には拡散モデルが有効であることが示唆された。
さらに,PAD-UFES-20を用いた皮膚癌訓練モデルのロバスト性を検討した。
関連論文リスト
- Vision-Language Model-Based Semantic-Guided Imaging Biomarker for Early Lung Cancer Detection [1.5391321019692428]
本研究は, 放射線技師による結節評価から得られた意味的特徴を統合することを目的としており, 肺がん予測のための臨床的, 堅牢, 説明可能な特徴を学習できるようにする。
比較言語-画像事前訓練モデルにパラメータ効率の良い微調整手法を適用し, 画像特徴と意味的特徴を一致させ, 1年間の肺がん診断を予測した。
我々のモデルは、AUROCが0.90、AUPRCが0.78で、外部データセットのベースライン・オブ・ザ・アーティファクトモデルよりも優れていることを示した。
論文 参考訳(メタデータ) (2025-04-30T06:11:34Z) - Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis [55.959002385347645]
遅延ドリフトにより、医療画像に対して拡散モデルを条件付けし、反ファクト画像生成の複雑なタスクに適合させることができる。
我々は,脳MRIと胸部X線による3つの時系列的ベンチマークデータセットを用いて,対物画像生成法について検討した。
論文 参考訳(メタデータ) (2024-12-30T01:59:34Z) - Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
1p/19q遺伝子の同時欠失は、低グレードグリオーマの臨床成績と関連している。
本研究の目的は,MRIを用いた畳み込みニューラルネットワークを脳がん検出に活用することである。
論文 参考訳(メタデータ) (2024-09-29T07:04:26Z) - Evaluating Machine Learning-based Skin Cancer Diagnosis [0.0]
この研究は、MobileNetベースのモデルとカスタムCNNモデルの2つの畳み込みニューラルネットワークアーキテクチャを評価する。
どちらのモデルも、皮膚病変を7つのカテゴリに分類し、危険病変と良性病変を区別する能力について評価されている。
この研究は、モデルが説明可能性を示す一方で、異なる肌のトーンの公平性を確保するためにさらなる開発が必要であると結論付けている。
論文 参考訳(メタデータ) (2024-09-04T02:44:48Z) - Virchow: A Million-Slide Digital Pathology Foundation Model [34.38679208931425]
本稿では,コンピュータ病理学の基礎モデルであるVirchowを紹介する。
Virchowは、150万のヘマトキシリンとエオシン染色されたスライドイメージに基づいて、632万のパラメータをトレーニングしたビジョントランスフォーマーモデルである。
論文 参考訳(メタデータ) (2023-09-14T15:09:35Z) - Classification of lung cancer subtypes on CT images with synthetic
pathological priors [41.75054301525535]
同症例のCT像と病理像との間には,画像パターンに大規模な関連性が存在する。
肺がんサブタイプをCT画像上で正確に分類するための自己生成型ハイブリッド機能ネットワーク(SGHF-Net)を提案する。
論文 参考訳(メタデータ) (2023-08-09T02:04:05Z) - Multivariate Analysis on Performance Gaps of Artificial Intelligence
Models in Screening Mammography [4.123006816939975]
異常分類のための深層学習モデルは,マンモグラフィーのスクリーニングにおいて良好に機能する。
モデル不全のリスクの増加に伴う人口統計学的、画像的、臨床的特徴はいまだに不明である。
年齢,人種,病理所見,組織密度,画像特徴によって定義されるサブグループによるモデル性能の評価を行った。
論文 参考訳(メタデータ) (2023-05-08T02:28:45Z) - Improving Disease Classification Performance and Explainability of Deep
Learning Models in Radiology with Heatmap Generators [0.0]
3つの実験セットがU-Netアーキテクチャを用いて行われ、分類性能が向上した。
最大の改善点は「肺炎」クラスと「CHF」クラスであり、ベースラインモデルは分類に最も苦労した。
論文 参考訳(メタデータ) (2022-06-28T13:03:50Z) - Deep Convolutional Neural Networks for Molecular Subtyping of Gliomas
Using Magnetic Resonance Imaging [24.418025043887678]
階層的分類パラダイムに基づく5つのグリオーマサブタイプ予測のためのDCNNモデルを開発した。
受信機動作特性解析から,曲線下領域(AUC)を用いて予測性能を評価した。
以上の結果から,開発したDCNNモデルではグリオーマサブタイプを十分な非平衡トレーニングデータで予測できることが示唆された。
論文 参考訳(メタデータ) (2022-03-10T14:46:20Z) - On the explainability of hospitalization prediction on a large COVID-19
patient dataset [45.82374977939355]
我々は、新型コロナウイルス陽性の米国の患者の大規模な(110ドル以上)コホートでの入院を予測するために、さまざまなAIモデルを開発した。
高いデータアンバランスにもかかわらず、モデルは平均精度0.96-0.98 (0.75-0.85)、リコール0.96-0.98 (0.74-0.85)、F_score097-0.98 (0.79-0.83)に達する。
論文 参考訳(メタデータ) (2021-10-28T10:23:38Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
このフレームワークには、飲み込みレベルにおけるディープラーニングモデルと、学習レベルにおける機能ベースの機械学習モデルが含まれている。
これは、生のマルチスワローデータからHRM研究のCC診断を自動的に予測する最初の人工知能モデルである。
論文 参考訳(メタデータ) (2021-06-25T20:09:23Z) - Transfer Learning with Ensembles of Deep Neural Networks for Skin Cancer
Classification in Imbalanced Data Sets [0.6802401545890961]
医療画像から皮膚癌を正確に分類するための機械学習技術が報告されている。
多くのテクニックは、訓練済みの畳み込みニューラルネットワーク(CNN)に基づいており、限られたトレーニングデータに基づいてモデルをトレーニングすることができる。
本稿では,複数のcnnモデルが事前学習され,一部は手元のデータのみにトレーニングされ,患者情報(メタデータ)はメタリーナーを用いて結合される,新しいアンサンブルベースのcnnアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-03-22T06:04:45Z) - A Deep Learning-Based Approach to Extracting Periosteal and Endosteal
Contours of Proximal Femur in Quantitative CT Images [25.76523855274612]
セグメンテーションタスクのために,3次元の終端(3D)完全畳み込みニューラルネットワークを開発した。
同一のネットワーク構造を持つ2つのモデルが訓練され、それぞれ腹腔内輪郭と内皮輪郭に対して97.87%と96.49%のサイコロ類似係数(DSC)を達成した。
大腿骨頚部骨折のリスク予測や有限要素解析などの臨床応用の可能性を示した。
論文 参考訳(メタデータ) (2021-02-03T10:23:41Z) - Analysis of skin lesion images with deep learning [0.0]
内視鏡画像の分類における美術の現状を評価します。
ImageNetデータセットに事前トレーニングされた様々なディープニューラルネットワークアーキテクチャは、組み合わせたトレーニングデータセットに適合する。
皮膚病変の8クラスの検出のためのこれらのモデルの性能と適用性を検討する。
論文 参考訳(メタデータ) (2021-01-11T10:58:36Z) - Machine Learning Automatically Detects COVID-19 using Chest CTs in a
Large Multicenter Cohort [43.99203831722203]
16施設2096例の胸部CT検査を行った。
新型コロナウイルスの分類のためのメートル法に基づくアプローチは、解釈可能な特徴を使用した。
深層学習に基づく分類器は,CT減衰から抽出した3D特徴と空域不透明度の確率分布を区別した。
論文 参考訳(メタデータ) (2020-06-09T00:40:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。