Quantum Generative Learning for High-Resolution Medical Image Generation
- URL: http://arxiv.org/abs/2406.13196v2
- Date: Wed, 16 Apr 2025 04:51:04 GMT
- Title: Quantum Generative Learning for High-Resolution Medical Image Generation
- Authors: Amena Khatun, Kübra Yeter Aydeniz, Yaakov S. Weinstein, Muhammad Usman,
- Abstract summary: Existing quantum generative adversarial networks (QGANs) fail to generate high-quality images due to their patch-based, pixel-wise learning approaches.<n>We propose a quantum image generative learning (QIGL) approach for high-quality medical image generation.
- Score: 1.189046876525661
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Integration of quantum computing in generative machine learning models has the potential to offer benefits such as training speed-up and superior feature extraction. However, the existing quantum generative adversarial networks (QGANs) fail to generate high-quality images due to their patch-based, pixel-wise learning approaches. These methods capture only local details, ignoring the global structure and semantic information of images. In this work, we address these challenges by proposing a quantum image generative learning (QIGL) approach for high-quality medical image generation. Our proposed quantum generator leverages variational quantum circuit approach addressing scalability issues by extracting principal components from the images instead of dividing them into patches. Additionally, we integrate the Wasserstein distance within the QIGL framework to generate a diverse set of medical samples. Through a systematic set of simulations on X-ray images from knee osteoarthritis and medical MNIST datasets, our model demonstrates superior performance, achieving the lowest Fr\'echet Inception Distance (FID) scores compared to its classical counterpart and advanced QGAN models reported in the literature.
Related papers
- End-to-End Demonstration of Quantum Generative Adversarial Networks for Steel Microstructure Image Augmentation on a Trapped-Ion Quantum Computer [1.6459866832540102]
Generative adversarial networks (GANs) are a machine learning technique capable of producing high-quality synthetic images.
We integrate quantum computing with GANs to generate complex 5-channel electron backscatter diffraction (EBSD) images of two distinct microstructure phases of steel.
We find that the hybrid quantum-classical WGAN improves over classical Bernoulli GANs in 70% of samples.
arXiv Detail & Related papers (2025-04-11T17:55:58Z) - HQViT: Hybrid Quantum Vision Transformer for Image Classification [48.72766405978677]
We propose a Hybrid Quantum Vision Transformer (HQViT) to accelerate model training while enhancing model performance.
HQViT introduces whole-image processing with amplitude encoding to better preserve global image information without additional positional encoding.
Experiments across various computer vision datasets demonstrate that HQViT outperforms existing models, achieving a maximum improvement of up to $10.9%$ (on the MNIST 10-classification task) over the state of the art.
arXiv Detail & Related papers (2025-04-03T16:13:34Z) - Quantum Generative Models for Image Generation: Insights from MNIST and MedMNIST [0.0]
We introduce two novel noise strategies: intrinsic quantum-generated noise and a tailored noise scheduling mechanism.
We evaluate our model on MNIST and MedMNIST datasets to examine its feasibility and performance.
arXiv Detail & Related papers (2025-03-30T06:36:22Z) - Advancements and Challenges in Quantum Machine Learning for Medical Image Classification: A Comprehensive Review [0.0]
Quantum Machine Learning (QML) offers a promising solution for medical image classification.
The parallelization of quantum computing can significantly improve speed and accuracy in disease detection and diagnosis.
It emphasizes moving from simulations to real quantum computers, addressing challenges like noisy qubits.
arXiv Detail & Related papers (2025-03-23T16:10:54Z) - Quantum Latent Diffusion Models [65.16624577812436]
We propose a potential version of a quantum diffusion model that leverages the established idea of classical latent diffusion models.
This involves using a traditional autoencoder to reduce images, followed by operations with variational circuits in the latent space.
The results demonstrate an advantage in using a quantum version, as evidenced by obtaining better metrics for the images generated by the quantum version.
arXiv Detail & Related papers (2025-01-19T21:24:02Z) - A Distributed Hybrid Quantum Convolutional Neural Network for Medical Image Classification [1.458255172453241]
We propose a distributed hybrid quantum convolutional neural network based on quantum circuit splitting.
By integrating distributed techniques based on quantum circuit splitting, the 8-qubit QCNN can be reconstructed using only 5 qubits.
Our model achieves strong performance across 3 datasets for both binary and multiclass classification tasks.
arXiv Detail & Related papers (2025-01-07T11:58:40Z) - Digital-analog quantum convolutional neural networks for image classification [3.7691369315275693]
We consider multipartite-entangled analog blocks, stemming from native Ising interactions in neutral-atom quantum processors.
We apply multiple quantum kernels by varying the qubit connectivity according to the hardware constraints.
An architecture that combines non-trainable quantum kernels and standard convolutional neural networks is used to classify realistic medical images.
arXiv Detail & Related papers (2024-05-01T14:43:20Z) - NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
This paper proposes to directly modulate the generation process of diffusion models using fMRI signals.
By training with about 67,000 fMRI-image pairs from various individuals, our model enjoys superior fMRI-to-image decoding capacity.
arXiv Detail & Related papers (2024-03-27T02:42:52Z) - Towards Transfer Learning for Large-Scale Image Classification Using
Annealing-based Quantum Boltzmann Machines [7.106829260811707]
We present an approach to employ Quantum Annealing (QA) in image classification.
We propose using annealing-based Quantum Boltzmann Machines as part of a hybrid quantum-classical pipeline.
We find that our approach consistently outperforms its classical baseline in terms of test accuracy and AUC-ROC-Score.
arXiv Detail & Related papers (2023-11-27T16:07:49Z) - CoNeS: Conditional neural fields with shift modulation for multi-sequence MRI translation [5.662694302758443]
Multi-sequence magnetic resonance imaging (MRI) has found wide applications in both modern clinical studies and deep learning research.
It frequently occurs that one or more of the MRI sequences are missing due to different image acquisition protocols or contrast agent contraindications of patients.
One promising approach is to leverage generative models to synthesize the missing sequences, which can serve as a surrogate acquisition.
arXiv Detail & Related papers (2023-09-06T19:01:58Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
This work focuses on designing an effective pre-training framework for 3D radiology images.
We introduce Disruptive Autoencoders, a pre-training framework that attempts to reconstruct the original image from disruptions created by a combination of local masking and low-level perturbations.
The proposed pre-training framework is tested across multiple downstream tasks and achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-07-31T17:59:42Z) - Hybrid Quantum-Classical Generative Adversarial Network for High
Resolution Image Generation [14.098992977726942]
Quantum machine learning (QML) has received increasing attention due to its potential to outperform classical machine learning methods in various problems.
A subclass of QML methods is quantum generative adversarial networks (QGANs) which have been studied as a quantum counterpart of classical GANs.
Here we integrate classical and quantum techniques to propose a new hybrid quantum-classical GAN framework.
arXiv Detail & Related papers (2022-12-22T11:18:35Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
The shortage of annotated medical images is one of the biggest challenges in the field of medical image computing.
In this paper, we develop a novel generative method named generative adversarial U-Net.
Our newly designed model is domain-free and generalizable to various medical images.
arXiv Detail & Related papers (2021-01-12T23:02:26Z) - Generation of High-Resolution Handwritten Digits with an Ion-Trap
Quantum Computer [55.41644538483948]
We implement a quantum-circuit based generative model to learn and sample the prior distribution of a Generative Adversarial Network.
We train this hybrid algorithm on an ion-trap device based on $171$Yb$+$ ion qubits to generate high-quality images.
arXiv Detail & Related papers (2020-12-07T18:51:28Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.