論文の概要: AgentNet: Decentralized Evolutionary Coordination for LLM-based Multi-Agent Systems
- arxiv url: http://arxiv.org/abs/2504.00587v1
- Date: Tue, 01 Apr 2025 09:45:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 13:20:37.484264
- Title: AgentNet: Decentralized Evolutionary Coordination for LLM-based Multi-Agent Systems
- Title(参考訳): AgentNet: LLMに基づくマルチエージェントシステムのための分散進化的コーディネート
- Authors: Yingxuan Yang, Huacan Chai, Shuai Shao, Yuanyi Song, Siyuan Qi, Renting Rui, Weinan Zhang,
- Abstract要約: AgentNet(エージェントネット)は、マルチエージェントシステムのための分散化された検索型生成(RAG)ベースのフレームワークである。
静的代入や集中制御に依存する従来のマルチエージェントシステムとは異なり、エージェントは動的に専門化できる。
AgentNetはスケーラブルな適応性を促進し、組織間のプライバシ保護コラボレーションを可能にする。
- 参考スコア(独自算出の注目度): 22.291969093748005
- License:
- Abstract: The rapid advancement of Large Language Models (LLMs) has catalyzed the development of multi-agent systems, where multiple LLM-based agents collaborate to solve complex tasks. However, existing systems predominantly rely on centralized coordination, which introduces scalability bottlenecks, limits adaptability, and creates single points of failure. Additionally, concerns over privacy and proprietary knowledge sharing hinder cross-organizational collaboration, leading to siloed expertise. To address these challenges, we propose AgentNet, a decentralized, Retrieval-Augmented Generation (RAG)-based framework that enables LLM-based agents to autonomously evolve their capabilities and collaborate efficiently in a Directed Acyclic Graph (DAG)-structured network. Unlike traditional multi-agent systems that depend on static role assignments or centralized control, AgentNet allows agents to specialize dynamically, adjust their connectivity, and route tasks without relying on predefined workflows. AgentNet's core design is built upon several key innovations: (1) Fully Decentralized Paradigm: Removing the central orchestrator, allowing agents to coordinate and specialize autonomously, fostering fault tolerance and emergent collective intelligence. (2) Dynamically Evolving Graph Topology: Real-time adaptation of agent connections based on task demands, ensuring scalability and resilience.(3) Adaptive Learning for Expertise Refinement: A retrieval-based memory system that enables agents to continuously update and refine their specialized skills. By eliminating centralized control, AgentNet enhances fault tolerance, promotes scalable specialization, and enables privacy-preserving collaboration across organizations. Through decentralized coordination and minimal data exchange, agents can leverage diverse knowledge sources while safeguarding sensitive information.
- Abstract(参考訳): 大規模言語モデル(LLM)の急速な進歩は、複数のLLMエージェントが協調して複雑なタスクを解くマルチエージェントシステムの開発を触媒にしている。
しかし、既存のシステムは、主に集中的な調整に依存しており、スケーラビリティのボトルネックを導入し、適応性を制限し、単一障害点を生成する。
さらに、プライバシとプロプライエタリな知識共有に関する懸念は、組織間のコラボレーションを妨げるため、サイロ化された専門知識につながります。
これらの課題に対処するため,我々は,LLMベースのエージェントが自律的にその能力を進化させ,DAG(Directed Acyclic Graph)構造化ネットワークで効率的に協調することを可能にする,分散化された検索型生成(RAG)ベースのフレームワークであるAgentNetを提案する。
静的なロール割り当てや集中管理に依存する従来のマルチエージェントシステムとは異なり、AgentNetはエージェントが事前に定義されたワークフローに頼ることなく、動的に専門化、接続の調整、タスクのルーティングを可能にする。
AgentNetの中核となる設計は、(1)完全に分散されたパラダイム: 中央のオーケストレータを取り除き、エージェントが自律的に調整し、専門化できるようにし、フォールトトレランスと創発的な集団知性を育む。
(2) 動的に進化するグラフトポロジー: タスク要求に基づいたエージェント接続のリアルタイム適応、スケーラビリティとレジリエンスの確保。
(3) アダプティブ・ラーニング・フォー・エキスパートズ・リファインメント(Adaptive Learning for Expertise Refinement): エージェントが専門的なスキルを継続的に更新し、洗練することを可能にする検索ベースのメモリシステム。
集中管理を排除することにより、AgentNetはフォールトトレランスを強化し、スケーラブルな特殊化を促進し、組織間のプライバシ保護コラボレーションを可能にする。
分散調整と最小限のデータ交換によって、エージェントは機密情報を保護しながら、多様な知識ソースを活用することができる。
関連論文リスト
- LLM-Powered Decentralized Generative Agents with Adaptive Hierarchical Knowledge Graph for Cooperative Planning [12.996741471128539]
動的オープンワールドシナリオにおける長期協力のためのインテリジェントエージェントの開発は、マルチエージェントシステムにおける大きな課題である。
本稿では,分散適応型知識グラフメモリと構造化通信システム(DAMCS)を,新しいマルチエージェントクラフト環境において提案する。
我々の生成エージェントはLLM(Large Language Models)を利用しており、長期計画と推論のために外部知識と言語を活用することで従来のMARLエージェントよりもスケーラブルである。
論文 参考訳(メタデータ) (2025-02-08T05:26:02Z) - Contextual Knowledge Sharing in Multi-Agent Reinforcement Learning with Decentralized Communication and Coordination [0.9776703963093367]
マルチエージェント強化学習(Dec-MARL)は、動的環境における複雑なタスクに対処するための重要なアプローチとして登場した。
本稿では,エージェントの知識共有プロセスに目標認識とタイムアウェアネスを取り入れ,ピアツーピアコミュニケーションとコーディネーションを統合した新しいDec-MARLフレームワークを提案する。
論文 参考訳(メタデータ) (2025-01-26T22:49:50Z) - DAWN: Designing Distributed Agents in a Worldwide Network [0.38447712214412116]
DAWNはグローバルに分散エージェントを登録し、ゲートウェイエージェントを通じて簡単に発見できる。
No-LLM Mode for Deterministic Task, Copilot for augmented decision-making, and LLM Agent for autonomous operations。
DAWNは、専用の安全性、セキュリティ、コンプライアンスレイヤを通じて、世界中のエージェントコラボレーションの安全性とセキュリティを保証する。
論文 参考訳(メタデータ) (2024-10-11T18:47:04Z) - Gödel Agent: A Self-Referential Agent Framework for Recursive Self-Improvement [117.94654815220404]
G"odel AgentはG"odelマシンにインスパイアされた自己進化型フレームワークである。
G"odel Agentは、パフォーマンス、効率、一般化性において手作業によるエージェントを上回る、継続的な自己改善を実現することができる。
論文 参考訳(メタデータ) (2024-10-06T10:49:40Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
既存のマルチエージェントフレームワークは、多種多様なサードパーティエージェントの統合に苦慮することが多い。
我々はこれらの制限に対処する新しいフレームワークであるInternet of Agents (IoA)を提案する。
IoAはエージェント統合プロトコル、インスタントメッセージのようなアーキテクチャ設計、エージェントのチーム化と会話フロー制御のための動的メカニズムを導入している。
論文 参考訳(メタデータ) (2024-07-09T17:33:24Z) - EvoAgent: Towards Automatic Multi-Agent Generation via Evolutionary Algorithms [55.77492625524141]
EvoAgentは、特殊エージェントをマルチエージェントシステムに自動的に拡張するジェネリックメソッドである。
EvoAgent は LLM エージェントのタスク解決能力を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2024-06-20T11:49:23Z) - Decentralized and Lifelong-Adaptive Multi-Agent Collaborative Learning [57.652899266553035]
分散型および生涯適応型多エージェント協調学習は、中央サーバを使わずに複数のエージェント間のコラボレーションを強化することを目的としている。
動的協調グラフを用いた分散マルチエージェント生涯協調学習アルゴリズムであるDeLAMAを提案する。
論文 参考訳(メタデータ) (2024-03-11T09:21:11Z) - S-Agents: Self-organizing Agents in Open-ended Environments [15.700383873385892]
動的ワークフローのための「エージェントのツリー」構造を持つ自己組織化エージェントシステム(S-Agents)を導入する。
この構造はエージェントのグループを自律的に調整することができ、オープン環境と動的環境の課題に効率的に対処することができる。
実験の結果,S-AgentsはMinecraft環境において協調的な建築作業や資源収集を行うことができた。
論文 参考訳(メタデータ) (2024-02-07T04:36:31Z) - Decentralized Control with Graph Neural Networks [147.84766857793247]
分散コントローラを学習するグラフニューラルネットワーク(GNN)を用いた新しいフレームワークを提案する。
GNNは、自然分散アーキテクチャであり、優れたスケーラビリティと転送性を示すため、タスクに適している。
分散コントローラの学習におけるGNNの可能性を説明するために、群れとマルチエージェントパス計画の問題を検討する。
論文 参考訳(メタデータ) (2020-12-29T18:59:14Z) - F2A2: Flexible Fully-decentralized Approximate Actor-critic for
Cooperative Multi-agent Reinforcement Learning [110.35516334788687]
分散マルチエージェント強化学習アルゴリズムは複雑なアプリケーションでは実践的でないことがある。
本稿では,大規模で汎用的なマルチエージェント設定を扱える,柔軟な完全分散型アクター批判型MARLフレームワークを提案する。
当社のフレームワークは,大規模環境におけるスケーラビリティと安定性を実現し,情報伝達を低減できる。
論文 参考訳(メタデータ) (2020-04-17T14:56:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。