論文の概要: GAAPO: Genetic Algorithmic Applied to Prompt Optimization
- arxiv url: http://arxiv.org/abs/2504.07157v3
- Date: Wed, 16 Apr 2025 09:41:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-17 11:14:46.807505
- Title: GAAPO: Genetic Algorithmic Applied to Prompt Optimization
- Title(参考訳): GAAPO: プロンプト最適化に応用した遺伝的アルゴリズム
- Authors: Xavier Sécheresse, Jacques-Yves Guilbert--Ly, Antoine Villedieu de Torcy,
- Abstract要約: 大規模言語モデル(LLM)は様々なタスクにまたがって顕著な能力を示しており、その性能は入力プロンプトの品質に大きく依存している。
迅速なエンジニアリングは有効であると証明されているが、通常は手動による調整に依存しており、時間を要するため、潜在的に最適ではない。
本稿では,代々のプロンプトを進化させるために遺伝的原理を活用するハイブリッド最適化フレームワークであるPrompt Optimizationに応用したジェネティックアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Large Language Models (LLMs) have demonstrated remarkable capabilities across various tasks, with their performance heavily dependent on the quality of input prompts. While prompt engineering has proven effective, it typically relies on manual adjustments, making it time-consuming and potentially suboptimal. This paper introduces GAAPO (Genetic Algorithm Applied to Prompt Optimization), a novel hybrid optimization framework that leverages genetic algorithm principles to evolve prompts through successive generations. Unlike traditional genetic approaches that rely solely on mutation and crossover operations, GAAPO integrates multiple specialized prompt generation strategies within its evolutionary framework. Through extensive experimentation on diverse datasets including ETHOS, MMLU-Pro, and GPQA, our analysis reveals several important point for the future development of automatic prompt optimization methods: importance of the tradeoff between the population size and the number of generations, effect of selection methods on stability results, capacity of different LLMs and especially reasoning models to be able to automatically generate prompts from similar queries... Furthermore, we provide insights into the relative effectiveness of different prompt generation strategies and their evolution across optimization phases. These findings contribute to both the theoretical understanding of prompt optimization and practical applications in improving LLM performance.
- Abstract(参考訳): 大規模言語モデル(LLM)は様々なタスクにまたがって顕著な能力を示しており、その性能は入力プロンプトの品質に大きく依存している。
迅速なエンジニアリングは有効であると証明されているが、通常は手動による調整に依存しており、時間を要するため、潜在的に最適ではない。
本稿では,GAAPO(Genetic Algorithm Applied to Prompt Optimization)について紹介する。
突然変異と交叉操作にのみ依存する従来の遺伝学的アプローチとは異なり、GAAPOは進化の枠組みに複数の特別なプロンプト生成戦略を統合する。
ETHOS, MMLU-Pro, GPQAなどの多種多様なデータセットの広範な実験を通じて, 自動的なプロンプト最適化手法の今後の発展に向けた重要なポイントとして, 人口規模と世代数とのトレードオフの重要性, 選択方法が安定性に与える影響, 異なるLLMの容量, 特に類似クエリからプロンプトを自動生成可能な推論モデルなどを明らかにした。
さらに、異なるプロンプト生成戦略の相対的有効性および最適化フェーズにおけるそれらの進化に関する洞察を提供する。
これらの知見は, 迅速な最適化の理論的理解と, LLMの性能向上への実践的応用に寄与する。
関連論文リスト
- Improving Existing Optimization Algorithms with LLMs [0.9668407688201361]
本稿では,Large Language Models (LLM) が既存の最適化アルゴリズムをどのように拡張するかを検討する。
事前学習した知識を用いて、革新的なバリエーションと実装戦略を提案する能力を示す。
以上の結果から, GPT-4oによる代替案はCMSAのエキスパート設計よりも優れていた。
論文 参考訳(メタデータ) (2025-02-12T10:58:57Z) - Deep Insights into Automated Optimization with Large Language Models and Evolutionary Algorithms [3.833708891059351]
大きな言語モデル(LLM)と進化的アルゴリズム(EA)は、制限を克服し、最適化をより自動化するための有望な新しいアプローチを提供する。
LLMは最適化戦略の生成、洗練、解釈が可能な動的エージェントとして機能する。
EAは進化作用素を通して、複雑な解空間を効率的に探索する。
論文 参考訳(メタデータ) (2024-10-28T09:04:49Z) - GANPrompt: Enhancing Robustness in LLM-Based Recommendations with GAN-Enhanced Diversity Prompts [15.920623515602038]
大規模言語モデル(LLM)は、素早い単語の影響を受けやすい。
本稿では,GAN(Generative Adversarial Networks)に基づく多次元LCMの多様性フレームワークであるGANPromptを提案する。
このフレームワークは,GAN生成技術とLLMの深い意味理解機能を統合することにより,多様なプロンプトに対するモデルの適応性と安定性を向上させる。
論文 参考訳(メタデータ) (2024-08-19T03:13:20Z) - Unleashing the Potential of Large Language Models as Prompt Optimizers: Analogical Analysis with Gradient-based Model Optimizers [108.72225067368592]
本稿では,大規模言語モデル(LLM)に基づくプロンプトの設計について検討する。
モデルパラメータ学習における2つの重要な要素を同定する。
グラディエントにインスパイアされた Prompt ベースの GPO を開発した。
論文 参考訳(メタデータ) (2024-02-27T15:05:32Z) - PhaseEvo: Towards Unified In-Context Prompt Optimization for Large
Language Models [9.362082187605356]
本稿では、LLMの生成能力と進化アルゴリズムのグローバル検索能力を組み合わせた効率的な自動プロンプト最適化フレームワークであるPhaseEvoについて述べる。
PhaseEvoは、優れた効率を維持しながら、最先端のベースライン手法を大きなマージンで大幅に上回っている。
論文 参考訳(メタデータ) (2024-02-17T17:47:10Z) - Connecting Large Language Models with Evolutionary Algorithms Yields
Powerful Prompt Optimizers [70.18534453485849]
EvoPromptは離散的なプロンプト最適化のためのフレームワークである。
進化的アルゴリズム(EA)の概念は、優れた性能と高速収束を示すものである。
人為的なプロンプトと既存の方法で自動プロンプト生成を著しく上回っている。
論文 参考訳(メタデータ) (2023-09-15T16:50:09Z) - Towards Self-adaptive Mutation in Evolutionary Multi-Objective
Algorithms [10.609857097723266]
自己適応が多目的進化アルゴリズムに与える影響について検討する。
単一目的最適化とハイパーボリュームに基づく突然変異率の適応は,GSEMOの収束を早めることができることを示す。
本稿では,単一目的の最適化を考慮し,各ソリューションの突然変異率を個別に調整する自己適応突然変異GSEMOを提案する。
論文 参考訳(メタデータ) (2023-03-08T14:26:46Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
分子目的を最適化するための様々なZO最適化手法の有効性について検討する。
ZO符号に基づく勾配降下(ZO-signGD)の利点を示す。
本稿では,Guurcamol スイートから広く使用されているベンチマークタスクに対して,ZO 最適化手法の有効性を示す。
論文 参考訳(メタデータ) (2022-10-27T01:58:10Z) - Result Diversification by Multi-objective Evolutionary Algorithms with
Theoretical Guarantees [94.72461292387146]
両目的探索問題として結果の多様化問題を再構成し,多目的進化アルゴリズム(EA)を用いて解くことを提案する。
GSEMOが最適時間近似比1/2$を達成できることを理論的に証明する。
目的関数が動的に変化すると、GSEMOはこの近似比をランニングタイムで維持することができ、Borodinらによって提案されたオープンな問題に対処する。
論文 参考訳(メタデータ) (2021-10-18T14:00:22Z) - Optimization-Inspired Learning with Architecture Augmentations and
Control Mechanisms for Low-Level Vision [74.9260745577362]
本稿では,GDC(Generative, Discriminative, and Corrective)の原則を集約する,最適化に着想を得た統合学習フレームワークを提案する。
フレキシブルな組み合わせで最適化モデルを効果的に解くために,3つのプロパゲーティブモジュールを構築した。
低レベル視覚タスクにおける実験は、GDCの有効性と適応性を検証する。
論文 参考訳(メタデータ) (2020-12-10T03:24:53Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOSは実数値変数の制約付きおよび制約なし問題に対する大域的最適化アルゴリズムである。
これはよく知られた微分進化(DE)アルゴリズムに多くの改良を加えている。
その結果、EOSisは、最先端の単一人口自己適応Dアルゴリズムと比較して高い性能を達成可能であることが証明された。
論文 参考訳(メタデータ) (2020-07-09T10:19:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。