論文の概要: Solving Time-Fractional Partial Integro-Differential Equations Using Tensor Neural Networks
- arxiv url: http://arxiv.org/abs/2504.01440v1
- Date: Wed, 02 Apr 2025 07:50:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 13:20:08.786738
- Title: Solving Time-Fractional Partial Integro-Differential Equations Using Tensor Neural Networks
- Title(参考訳): テンソルニューラルネットワークを用いた時間-フラクタル部分積分微分方程式の解法
- Authors: Zhongshuo Lin, Qingkui Ma, Hehu Xie, Xiaobo Yin,
- Abstract要約: 線形時間-屈折拡散波方程式を解くために,適応テンソルニューラルネットワーク部分空間に基づく新しい機械学習手法を提案する。
提案したテンソルニューラルネットワークに基づく機械学習手法の有効性と精度を検証するために,いくつかの数値例が提供される。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In this paper, we propose a novel machine learning method based on adaptive tensor neural network subspace to solve linear time-fractional diffusion-wave equations and nonlinear time-fractional partial integro-differential equations. In this framework, the tensor neural network and Gauss-Jacobi quadrature are effectively combined to construct a universal numerical scheme for the temporal Caputo derivative with orders spanning $ (0,1)$ and $(1,2)$. Specifically, in order to effectively utilize Gauss-Jacobi quadrature to discretize Caputo derivatives, we design the tensor neural network function multiplied by the function $t^{\mu}$ where the power $\mu$ is selected according to the parameters of the equations at hand. Finally, some numerical examples are provided to validate the efficiency and accuracy of the proposed tensor neural network-based machine learning method.
- Abstract(参考訳): 本稿では,線形時間-屈折拡散波方程式と非線形時間-屈折偏微分方程式を解くための適応テンソルニューラルネットワーク部分空間に基づく新しい機械学習手法を提案する。
この枠組みでは、テンソルニューラルネットワークとガウス・ヤコビ二次方程式を効果的に組み合わせて、(0,1)$および(1,2)$の順序で時間的カプトー微分の普遍的な数値スキームを構築する。
具体的には、ガウス・ヤコビ二次方程式を有効活用してカプトー微分を識別するために、関数 $t^{\mu}$ で乗算したテンソルニューラルネットワーク関数を設計する。
最後に、提案したテンソルニューラルネットワークに基づく機械学習手法の有効性と精度を検証するために、いくつかの数値的な例を提供する。
関連論文リスト
- Chebyshev Spectral Neural Networks for Solving Partial Differential Equations [0.0]
この研究は、フィードフォワードニューラルネットワークモデルとエラーバックプロパゲーション原理を用いて、損失関数の計算に自動微分(AD)を利用する。
楕円偏微分方程式を用いて,CSNNモデルの数値効率と精度について検討し,よく知られた物理インフォームドニューラルネットワーク(PINN)法と比較した。
論文 参考訳(メタデータ) (2024-06-06T05:31:45Z) - PMNN:Physical Model-driven Neural Network for solving time-fractional
differential equations [17.66402435033991]
時間差分方程式を解くために, 革新的物理モデル駆動ニューラルネットワーク (PMNN) 法を提案する。
ディープニューラルネットワーク(DNN)と分数微分の近似を効果的に組み合わせる。
論文 参考訳(メタデータ) (2023-10-07T12:43:32Z) - Efficient SGD Neural Network Training via Sublinear Activated Neuron
Identification [22.361338848134025]
本稿では,ReLUの活性化をシフトする2層ニューラルネットワークについて,幾何学的探索によるサブ線形時間における活性化ニューロンの同定を可能にする。
また、我々のアルゴリズムは、係数ノルム上界$M$とエラー項$epsilon$の2次ネットワークサイズで$O(M2/epsilon2)$時間に収束できることを示す。
論文 参考訳(メタデータ) (2023-07-13T05:33:44Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Local Extreme Learning Machines and Domain Decomposition for Solving
Linear and Nonlinear Partial Differential Equations [0.0]
本稿では線形偏微分方程式と非線形偏微分方程式の解法を提案する。
この手法は、極端学習機械(ELM)、ドメイン分解、局所ニューラルネットワークのアイデアを組み合わせたものである。
本稿では,DGM法(Deep Galerkin Method)とPINN(Physical-informed Neural Network)を精度と計算コストの観点から比較する。
論文 参考訳(メタデータ) (2020-12-04T23:19:39Z) - Deep neural network for solving differential equations motivated by
Legendre-Galerkin approximation [16.64525769134209]
線形微分方程式と非線形微分方程式の両方における様々なニューラルネットワークアーキテクチャの性能と精度について検討する。
我々は、微分方程式の解を予測するために、新しいレジェンダ-ガレルキンディープニューラルネットワーク(LGNet)アルゴリズムを実装した。
論文 参考訳(メタデータ) (2020-10-24T20:25:09Z) - Connecting Weighted Automata, Tensor Networks and Recurrent Neural
Networks through Spectral Learning [58.14930566993063]
我々は、形式言語と言語学からの重み付き有限オートマトン(WFA)、機械学習で使用されるリカレントニューラルネットワーク、テンソルネットワークの3つのモデル間の接続を提示する。
本稿では,連続ベクトル入力の列上に定義された線形2-RNNに対する最初の証明可能な学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-10-19T15:28:00Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z) - Measuring Model Complexity of Neural Networks with Curve Activation
Functions [100.98319505253797]
本稿では,線形近似ニューラルネットワーク(LANN)を提案する。
ニューラルネットワークのトレーニングプロセスを実験的に検討し、オーバーフィッティングを検出する。
我々は、$L1$と$L2$正規化がモデルの複雑さの増加を抑制することを発見した。
論文 参考訳(メタデータ) (2020-06-16T07:38:06Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。