論文の概要: Density estimation via mixture discrepancy and moments
- arxiv url: http://arxiv.org/abs/2504.01570v1
- Date: Wed, 02 Apr 2025 10:15:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 13:23:38.534089
- Title: Density estimation via mixture discrepancy and moments
- Title(参考訳): 相違とモーメントの混合による密度推定
- Authors: Zhengyang Lei, Sihong Shao,
- Abstract要約: 混合離散性に基づくシーケンシャルパーティション(DSP-mix)による密度推定とモーメントに基づくシーケンシャルパーティション(MSP)による密度推定を提案する。
結果: DSP-mix と MSP は DSP の約10倍の速度で動作し,同じ精度を維持した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: With the aim of generalizing histogram statistics to higher dimensional cases, density estimation via discrepancy based sequential partition (DSP) has been proposed [D. Li, K. Yang, W. Wong, Advances in Neural Information Processing Systems (2016) 1099-1107] to learn an adaptive piecewise constant approximation defined on a binary sequential partition of the underlying domain, where the star discrepancy is adopted to measure the uniformity of particle distribution. However, the calculation of the star discrepancy is NP-hard and it does not satisfy the reflection invariance and rotation invariance either. To this end, we use the mixture discrepancy and the comparison of moments as a replacement of the star discrepancy, leading to the density estimation via mixture discrepancy based sequential partition (DSP-mix) and density estimation via moments based sequential partition (MSP), respectively. Both DSP-mix and MSP are computationally tractable and exhibit the reflection and rotation invariance. Numerical experiments in reconstructing the $d$-D mixture of Gaussians and Betas with $d=2, 3, \dots, 6$ demonstrate that DSP-mix and MSP both run approximately ten times faster than DSP while maintaining the same accuracy.
- Abstract(参考訳): D. Li, K. Yang, W. Wong, Advances in Neural Information Processing Systems (2016) 1099-1107] は、高次元領域にヒストグラム統計を一般化する目的で提案されている。
しかし、星間距離の計算はNPハードであり、反射不変性や回転不変性も満たさない。
この目的のために、混合相違とモーメントの比較を星間差の代替として使用し、混合相違に基づくシーケンシャルパーティション(DSP-mix)とモーメントに基づくシーケンシャルパーティション(MSP)による密度推定を行う。
DSP-mixとMSPはどちらも計算的に抽出可能であり、反射と回転の不変性を示す。
ガウスとベータの$d$-D混合物を$d=2, 3, \dots, 6$で再構成する数値実験により、DSP-mixとMSPはDSPよりも約10倍速く動作し、同じ精度を維持していることが示された。
関連論文リスト
- Summarizing Bayesian Nonparametric Mixture Posterior -- Sliced Optimal Transport Metrics for Gaussian Mixtures [10.694077392690447]
混合モデルの後方推論を要約する既存の方法は、クラスタリングのための暗黙のランダムパーティションの点推定を同定することに焦点を当てている。
本研究では,非パラメトリックベイズ混合モデルにおける後部推論を要約し,混合度(または混合度)の密度推定を推論対象として優先順位付けする手法を提案する。
論文 参考訳(メタデータ) (2024-11-22T02:15:38Z) - Superresolution in separation estimation between two dynamic incoherent sources using spatial demultiplexing [0.0]
近年、ハーマイト・ガウスモードにおける空間モード除算(SPADE)に基づく完全な測定により、2つの弱い不整合定常源の分離を推定する精度の量子限界に達した。
本稿では、ソースの定常性に関する仮定を捨てて、完璧な設定から別の逸脱を考える。
定常源シナリオにおける推定パラメータの1つを削減できる測定アルゴリズムを定式化する。
論文 参考訳(メタデータ) (2024-07-15T07:57:57Z) - Density Ratio Estimation via Sampling along Generalized Geodesics on Statistical Manifolds [0.951494089949975]
インクリメンタルな混合に基づく密度比推定のための既存の手法を幾何学的に再解釈する。
そのような方法を達成するには、モンテカルロは2つの分布の変換を通して測地線に沿ってサンプリングする必要がある。
提案手法が既存手法より優れていることを示す実験を行った。
論文 参考訳(メタデータ) (2024-06-27T00:44:46Z) - Unraveling the Smoothness Properties of Diffusion Models: A Gaussian Mixture Perspective [18.331374727331077]
拡散過程のリプシッツ連続性と第二運動量特性の理論的理解を提供する。
この結果から, 共通データ分布下での拡散過程のダイナミクスについて, より深い理論的知見が得られた。
論文 参考訳(メタデータ) (2024-05-26T03:32:27Z) - Collaborative Heterogeneous Causal Inference Beyond Meta-analysis [68.4474531911361]
異種データを用いた因果推論のための協調的逆確率スコア推定器を提案する。
異質性の増加に伴うメタアナリシスに基づく手法に対して,本手法は有意な改善を示した。
論文 参考訳(メタデータ) (2024-04-24T09:04:36Z) - Adaptive Annealed Importance Sampling with Constant Rate Progress [68.8204255655161]
Annealed Importance Smpling (AIS)は、抽出可能な分布から重み付けされたサンプルを合成する。
本稿では,alpha$-divergencesに対する定数レートAISアルゴリズムとその効率的な実装を提案する。
論文 参考訳(メタデータ) (2023-06-27T08:15:28Z) - Non-Parametric Learning of Stochastic Differential Equations with Non-asymptotic Fast Rates of Convergence [65.63201894457404]
非線形微分方程式のドリフトと拡散係数の同定のための新しい非パラメトリック学習パラダイムを提案する。
鍵となる考え方は、基本的には、対応するフォッカー・プランク方程式のRKHSに基づく近似をそのような観測に適合させることである。
論文 参考訳(メタデータ) (2023-05-24T20:43:47Z) - Density Ratio Estimation via Infinitesimal Classification [85.08255198145304]
そこで我々は, DRE-inftyを提案する。 DRE-inftyは, 密度比推定(DRE)を, より簡単なサブプロブレムに還元する手法である。
モンテカルロ法にインスパイアされ、中間ブリッジ分布の無限連続体を介して2つの分布の間を滑らかに補間する。
提案手法は,複雑な高次元データセット上での相互情報推定やエネルギーベースモデリングなどの下流タスクにおいて良好に動作することを示す。
論文 参考訳(メタデータ) (2021-11-22T06:26:29Z) - Relative Entropy Gradient Sampler for Unnormalized Distributions [14.060615420986796]
非正規分布からのサンプリングのための相対エントロピー勾配サンプリング器(REGS)
REGSは、参照分布からサンプルへの初期サンプルを非正規化対象分布から反復的に押し出す単純な非線形変換の列を求める粒子法である。
論文 参考訳(メタデータ) (2021-10-06T14:10:38Z) - Kernel distance measures for time series, random fields and other
structured data [71.61147615789537]
kdiffは、構造化データのインスタンス間の距離を推定するためのカーネルベースの新しい尺度である。
これはインスタンス間の自己類似性と交差類似性の両方を考慮し、距離分布の低い定量値を用いて定義される。
kdiffをクラスタリングと分類問題のための距離尺度として用いた分離性条件について,いくつかの理論的結果が得られた。
論文 参考訳(メタデータ) (2021-09-29T22:54:17Z) - The Connection between Discrete- and Continuous-Time Descriptions of
Gaussian Continuous Processes [60.35125735474386]
我々は、一貫した推定子をもたらす離散化が粗粒化下での不変性を持つことを示す。
この結果は、導関数再構成のための微分スキームと局所時間推論アプローチの組み合わせが、2次または高次微分方程式の時系列解析に役立たない理由を説明する。
論文 参考訳(メタデータ) (2021-01-16T17:11:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。