論文の概要: CHARMS: A Cognitive Hierarchical Agent for Reasoning and Motion Stylization in Autonomous Driving
- arxiv url: http://arxiv.org/abs/2504.02450v3
- Date: Mon, 28 Apr 2025 15:26:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:52.371989
- Title: CHARMS: A Cognitive Hierarchical Agent for Reasoning and Motion Stylization in Autonomous Driving
- Title(参考訳): CHARMS:自律運転における推論と運動スティリゼーションのための認知的階層的エージェント
- Authors: Jingyi Wang, Duanfeng Chu, Zejian Deng, Liping Lu, Jinxiang Wang, Chen Sun,
- Abstract要約: 本稿では,共振・運動スティリゼーションのための認知階層的エージェントを提案する。
CHARMSは、強化学習事前訓練と教師付き微調整を含む2段階のトレーニングパイプラインを通じて、人間に似た推論パターンをキャプチャする。
インテリジェントな運転決定をエゴ車として行い、環境車両として多様な現実的な運転シナリオを生成することができる。
- 参考スコア(独自算出の注目度): 7.672737334176452
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To address the challenge of insufficient interactivity and behavioral diversity in autonomous driving decision-making, this paper proposes a Cognitive Hierarchical Agent for Reasoning and Motion Stylization (CHARMS). By leveraging Level-k game theory, CHARMS captures human-like reasoning patterns through a two-stage training pipeline comprising reinforcement learning pretraining and supervised fine-tuning. This enables the resulting models to exhibit diverse and human-like behaviors, enhancing their decision-making capacity and interaction fidelity in complex traffic environments. Building upon this capability, we further develop a scenario generation framework that utilizes the Poisson cognitive hierarchy theory to control the distribution of vehicles with different driving styles through Poisson and binomial sampling. Experimental results demonstrate that CHARMS is capable of both making intelligent driving decisions as an ego vehicle and generating diverse, realistic driving scenarios as environment vehicles. The code for CHARMS is released at https://github.com/chuduanfeng/CHARMS.
- Abstract(参考訳): 本稿では,自律運転意思決定における対話性と行動の多様性の欠如に対処するために,共振・運動スティル化のための認知階層的エージェント(CHARMS)を提案する。
Level-kゲーム理論を活用することで、CHARMSは強化学習事前学習と教師付き微調整を含む2段階のトレーニングパイプラインを通じて、人間のような推論パターンをキャプチャする。
これにより、結果として得られるモデルは、多様で人間的な振る舞いを示し、複雑な交通環境における意思決定能力と相互作用の忠実さを高めることができる。
この能力に基づいて、ポアソン認知階層理論を利用して、ポアソンと二項サンプリングを通して異なる運転スタイルの車両の分布を制御するシナリオ生成フレームワークをさらに発展させる。
実験の結果、CHARMSはエゴ車としてインテリジェントな運転決定を行うことができ、環境車として多様な現実的な運転シナリオを生成することができることがわかった。
CHARMSのコードはhttps://github.com/chuduanfeng/CHARMSで公開されている。
関連論文リスト
- AI-Driven Day-to-Day Route Choice [15.934133434324755]
LLMTravelerは過去の経験から学び、検索したデータと性格特性のバランスをとることで意思決定を行うエージェントである。
本稿では,LLMTravelerが日常の混雑ゲーム2段階を通じて人間的な意思決定を再現する能力について,体系的に評価する。
この能力は、旅行者の新しいポリシーに対する反応やネットワークの変更をシミュレートするなど、交通政策立案に有用な洞察を提供する。
論文 参考訳(メタデータ) (2024-12-04T14:13:38Z) - MetaFollower: Adaptable Personalized Autonomous Car Following [63.90050686330677]
適応型パーソナライズされた自動車追従フレームワークであるMetaFollowerを提案する。
まず,モデルに依存しないメタラーニング(MAML)を用いて,様々なCFイベントから共通運転知識を抽出する。
さらに、Long Short-Term Memory (LSTM) と Intelligent Driver Model (IDM) を組み合わせて、時間的不均一性を高い解釈性で反映する。
論文 参考訳(メタデータ) (2024-06-23T15:30:40Z) - Probing Multimodal LLMs as World Models for Driving [72.18727651074563]
自律運転におけるMLLM(Multimodal Large Language Models)の適用について検討する。
GPT-4oのようなモデルの開発は進んでいるが、複雑な運転環境における性能は未解明のままである。
論文 参考訳(メタデータ) (2024-05-09T17:52:42Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
本稿では,関係時間的推論を伴う3つの補助的タスクを提案し,それらを標準のディープラーニングフレームワークに統合する。
これらの補助的なタスクは、他の対話的エージェントの行動パターンを推測するための追加の監視信号を提供する。
提案手法は,標準評価指標の観点から,頑健かつ最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-11-27T18:57:42Z) - Decision Making for Autonomous Driving in Interactive Merge Scenarios
via Learning-based Prediction [39.48631437946568]
本稿では,他のドライバの動作から不確実性が生ずる移動トラフィックにマージする複雑なタスクに焦点を当てる。
我々はこの問題を部分的に観測可能なマルコフ決定プロセス(POMDP)とみなし、モンテカルロ木探索でオンラインに解決する。
POMDPの解決策は、接近する車に道を譲る、前方の車から安全な距離を維持する、あるいは交通に合流するといった、高いレベルの運転操作を行う政策である。
論文 参考訳(メタデータ) (2023-03-29T16:12:45Z) - Model-Based Reinforcement Learning with Isolated Imaginations [61.67183143982074]
モデルに基づく強化学習手法であるIso-Dream++を提案する。
我々は、切り離された潜在的想像力に基づいて政策最適化を行う。
これにより、野生の混合力学源を孤立させることで、長い水平振動子制御タスクの恩恵を受けることができる。
論文 参考訳(メタデータ) (2023-03-27T02:55:56Z) - Isolating and Leveraging Controllable and Noncontrollable Visual
Dynamics in World Models [65.97707691164558]
Iso-DreamはDream-to-Controlフレームワークを2つの側面で改善する。
まず、逆動力学を最適化することにより、世界モデルに制御可能で制御不能な情報源を学習させることを奨励する。
第2に、エージェントの挙動を世界モデルの切り離された潜在的想像力に最適化する。
論文 参考訳(メタデータ) (2022-05-27T08:07:39Z) - Transferable and Adaptable Driving Behavior Prediction [34.606012573285554]
本研究では,運転行動に対して高品質で伝達可能で適応可能な予測を生成する階層型フレームワークであるHATNを提案する。
我々は,交差点における実交通データの軌跡予測と,インターActionデータセットからのラウンドアバウンドのタスクにおいて,我々のアルゴリズムを実証する。
論文 参考訳(メタデータ) (2022-02-10T16:46:24Z) - Causal Imitative Model for Autonomous Driving [85.78593682732836]
慣性および衝突問題に対処するための因果Imitative Model (CIM)を提案する。
CIMは因果モデルを明確に発見し、ポリシーのトレーニングに利用します。
実験の結果,本手法は慣性および衝突速度において従来の手法よりも優れていたことがわかった。
論文 参考訳(メタデータ) (2021-12-07T18:59:15Z) - Inverse Reinforcement Learning Based Stochastic Driver Behavior Learning [3.4979173592795374]
ドライバーは、交通の中で車両を操作する際に、ユニークでリッチな運転行動を持つ。
本稿では,現実的な運転シナリオにおける人間の運転行動の独特性と豊かさを捉えた,新しい運転行動学習手法を提案する。
論文 参考訳(メタデータ) (2021-07-01T20:18:03Z) - Contingencies from Observations: Tractable Contingency Planning with
Learned Behavior Models [82.34305824719101]
人間は未来の出来事を正確に推論することで決定を下す素晴らしい能力を持っている。
本研究では,高次元のシーン観察からエンドツーエンドに学習する汎用コンテンシビリティプランナを開発する。
このモデルが行動観察から忍耐強くコンティンジェンシーを学習できることを示す。
論文 参考訳(メタデータ) (2021-04-21T14:30:20Z) - Building Safer Autonomous Agents by Leveraging Risky Driving Behavior
Knowledge [1.52292571922932]
本研究は,モデルフリーな学習エージェントを作成するために,重交通や予期せぬランダムな行動を伴うリスクやすいシナリオの作成に重点を置いている。
ハイウェイ-envシミュレーションパッケージに新しいカスタムマルコフ決定プロセス(MDP)環境イテレーションを作成することにより、複数の自動運転シナリオを生成します。
リスクの高い運転シナリオを補足したモデル自由学習エージェントを訓練し,その性能をベースラインエージェントと比較する。
論文 参考訳(メタデータ) (2021-03-16T23:39:33Z) - Modeling Human Driving Behavior through Generative Adversarial Imitation
Learning [7.387855463533219]
本稿では、学習に基づくドライバモデリングにおけるGAIL(Generative Adversarial Imitation Learning)の使用について述べる。
ドライバモデリングは本質的にマルチエージェント問題であるため,PS-GAILと呼ばれるGAILのパラメータ共有拡張について述べる。
本稿では、報酬信号を変更し、エージェントにドメイン固有の知識を提供するReward Augmented Imitation Learning (RAIL)について述べる。
論文 参考訳(メタデータ) (2020-06-10T05:47:39Z) - A Probabilistic Framework for Imitating Human Race Driver Behavior [31.524303667746643]
本稿では,運転行動モデリングのタスクを複数のモジュールに分割するモジュラーフレームワークProMoDを提案する。
確率的運動プリミティブを用いて大域的目標軌道分布を学習し、局所経路生成にウエイドを使用し、ニューラルネットワークにより対応する行動選択を行う。
シミュレーションカーレースセッティングの実験は、他の模倣学習アルゴリズムと比較して、模倣精度とロバスト性にかなりの利点がある。
論文 参考訳(メタデータ) (2020-01-22T20:06:38Z) - Intelligent Roundabout Insertion using Deep Reinforcement Learning [68.8204255655161]
本稿では,多忙なラウンドアバウンドの入場を交渉できる演習計画モジュールを提案する。
提案されたモジュールは、トレーニングされたニューラルネットワークに基づいて、操作の全期間にわたって、ラウンドアバウンドに入るタイミングと方法を予測する。
論文 参考訳(メタデータ) (2020-01-03T11:16:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。