The Amenability Framework: Rethinking Causal Ordering Without Estimating Causal Effects
- URL: http://arxiv.org/abs/2504.02456v2
- Date: Fri, 04 Apr 2025 02:16:54 GMT
- Title: The Amenability Framework: Rethinking Causal Ordering Without Estimating Causal Effects
- Authors: Carlos Fernández-Loría, Jorge Loría,
- Abstract summary: We propose a conceptual framework based on an individual's latent proclivity to be influenced by an intervention.<n>We then formalize conditions under which predictive scores serve as effective proxies for amenability.<n>We show that, under plausible assumptions, predictive models can outperform causal effect estimators in ranking individuals by intervention effects.
- Score: 1.6114012813668932
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Who should we prioritize for intervention when we cannot estimate intervention effects? In many applied domains (e.g., advertising, customer retention, and behavioral nudging) prioritization is guided by predictive models that estimate outcome probabilities rather than causal effects. This paper investigates when these predictions (scores) can effectively rank individuals by their intervention effects, particularly when direct effect estimation is infeasible or unreliable. We propose a conceptual framework based on amenability: an individual's latent proclivity to be influenced by an intervention. We then formalize conditions under which predictive scores serve as effective proxies for amenability. These conditions justify using non-causal scores for intervention prioritization, even when the scores do not directly estimate effects. We further show that, under plausible assumptions, predictive models can outperform causal effect estimators in ranking individuals by intervention effects. Empirical evidence from an advertising context supports our theoretical findings, demonstrating that predictive modeling can offer a more robust approach to targeting than effect estimation. Our framework suggests a shift in focus, from estimating effects to inferring who is amenable, as a practical and theoretically grounded strategy for prioritizing interventions in resource-constrained environments.
Related papers
- Performative Prediction on Games and Mechanism Design [69.7933059664256]
We study a collective risk dilemma where agents decide whether to trust predictions based on past accuracy.<n>As predictions shape collective outcomes, social welfare arises naturally as a metric of concern.<n>We show how to achieve better trade-offs and use them for mechanism design.
arXiv Detail & Related papers (2024-08-09T16:03:44Z) - Causal Fine-Tuning and Effect Calibration of Non-Causal Predictive Models [1.3124513975412255]
This paper proposes techniques to enhance the performance of non-causal models for causal inference using data from randomized experiments.
In domains like advertising, customer retention, and precision medicine, non-causal models that predict outcomes under no intervention are often used to score individuals and rank them according to the expected effectiveness of an intervention.
arXiv Detail & Related papers (2024-06-13T20:18:16Z) - Reduced-Rank Multi-objective Policy Learning and Optimization [57.978477569678844]
In practice, causal researchers do not have a single outcome in mind a priori.
In government-assisted social benefit programs, policymakers collect many outcomes to understand the multidimensional nature of poverty.
We present a data-driven dimensionality-reduction methodology for multiple outcomes in the context of optimal policy learning.
arXiv Detail & Related papers (2024-04-29T08:16:30Z) - On the Actionability of Outcome Prediction [8.32379926107182]
Practitioners recognize that the ultimate goal is not just to predict but to act effectively.
We ask: when are accurate predictors of outcomes helpful for identifying the most suitable intervention?
We find that except in cases where there is a single decisive action for improving the outcome, outcome prediction never maximizes "action value"
arXiv Detail & Related papers (2023-09-08T17:57:31Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
We propose a framework for efficient and effective counterfactual inference implemented with neural networks.
The proposed approach enhances the capacity to generalize estimated counterfactual outcomes to unseen data.
Empirical results conducted on multiple datasets offer compelling support for our theoretical assertions.
arXiv Detail & Related papers (2023-06-09T08:30:51Z) - Linking a predictive model to causal effect estimation [21.869233469885856]
This paper first tackles the challenge of estimating the causal effect of any feature (as the treatment) on the outcome w.r.t. a given instance.
The theoretical results naturally link a predictive model to causal effect estimations and imply that a predictive model is causally interpretable.
We use experiments to demonstrate that various types of predictive models, when satisfying the conditions identified in this paper, can estimate the causal effects of features as accurately as state-of-the-art causal effect estimation methods.
arXiv Detail & Related papers (2023-04-10T13:08:16Z) - Inferring Effect Ordering Without Causal Effect Estimation [1.6114012813668932]
We investigate when and why predictions can reliably rank individuals by causal effects in settings where direct effect estimation is infeasible.<n>We introduce three key conditions -- full latent moderation, full latent mediation, and latent monotonicity -- that determine when scores can recover causal-effect rankings and, in some cases, even outperform direct effect estimation.
arXiv Detail & Related papers (2022-06-25T02:15:22Z) - Empirical Estimates on Hand Manipulation are Recoverable: A Step Towards
Individualized and Explainable Robotic Support in Everyday Activities [80.37857025201036]
Key challenge for robotic systems is to figure out the behavior of another agent.
Processing correct inferences is especially challenging when (confounding) factors are not controlled experimentally.
We propose equipping robots with the necessary tools to conduct observational studies on people.
arXiv Detail & Related papers (2022-01-27T22:15:56Z) - Deconfounding Scores: Feature Representations for Causal Effect
Estimation with Weak Overlap [140.98628848491146]
We introduce deconfounding scores, which induce better overlap without biasing the target of estimation.
We show that deconfounding scores satisfy a zero-covariance condition that is identifiable in observed data.
In particular, we show that this technique could be an attractive alternative to standard regularizations.
arXiv Detail & Related papers (2021-04-12T18:50:11Z) - Counterfactual Predictions under Runtime Confounding [74.90756694584839]
We study the counterfactual prediction task in the setting where all relevant factors are captured in the historical data.
We propose a doubly-robust procedure for learning counterfactual prediction models in this setting.
arXiv Detail & Related papers (2020-06-30T15:49:05Z) - On the role of surrogates in the efficient estimation of treatment effects with limited outcome data [43.17788100119767]
We study how incorporating data on units for which only surrogate outcomes not of primary interest are observed can increase the precision of ATE estimation.
We develop robust ATE estimation and inference methods that realize these efficiency gains.
arXiv Detail & Related papers (2020-03-27T13:31:49Z) - Nonparametric inference for interventional effects with multiple
mediators [0.0]
We provide theory that allows for more flexible, possibly machine learning-based, estimation techniques.
We demonstrate multiple robustness properties of the proposed estimators.
Our work thus provides a means of leveraging modern statistical learning techniques in estimation of interventional mediation effects.
arXiv Detail & Related papers (2020-01-16T19:05:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.