Probabilistic Pontryagin's Maximum Principle for Continuous-Time Model-Based Reinforcement Learning
- URL: http://arxiv.org/abs/2504.02543v2
- Date: Mon, 07 Apr 2025 11:11:43 GMT
- Title: Probabilistic Pontryagin's Maximum Principle for Continuous-Time Model-Based Reinforcement Learning
- Authors: David Leeftink, Çağatay Yıldız, Steffen Ridderbusch, Max Hinne, Marcel van Gerven,
- Abstract summary: We show that minimization of the mean Hamiltonian is a necessary optimality condition when optimizing the mean cost.<n>Our approach offers a principled and practical framework for controlling uncertain systems with learned dynamics.
- Score: 3.6300632181659234
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Without exact knowledge of the true system dynamics, optimal control of non-linear continuous-time systems requires careful treatment of epistemic uncertainty. In this work, we propose a probabilistic extension to Pontryagin's maximum principle by minimizing the mean Hamiltonian with respect to epistemic uncertainty. We show minimization of the mean Hamiltonian is a necessary optimality condition when optimizing the mean cost, and propose a multiple shooting numerical method scalable to large-scale probabilistic dynamical models, including ensemble neural ordinary differential equations. Comparisons against state-of-the-art methods in online and offline model-based reinforcement learning tasks show that our probabilistic Hamiltonian formulation leads to reduced trial costs in offline settings and achieves competitive performance in online scenarios. By bridging optimal control and reinforcement learning, our approach offers a principled and practical framework for controlling uncertain systems with learned dynamics.
Related papers
- Receding Hamiltonian-Informed Optimal Neural Control and State Estimation for Closed-Loop Dynamical Systems [4.05766189327054]
Hamiltonian-Informed Optimal Neural (Hion) controllers are a novel class of neural network-based controllers for dynamical systems.
Hion controllers estimate future states and compute optimal control inputs using Pontryagin's Principle.
arXiv Detail & Related papers (2024-11-02T16:06:29Z) - Probabilistic Reach-Avoid for Bayesian Neural Networks [71.67052234622781]
We show that an optimal synthesis algorithm can provide more than a four-fold increase in the number of certifiable states.
The algorithm is able to provide more than a three-fold increase in the average guaranteed reach-avoid probability.
arXiv Detail & Related papers (2023-10-03T10:52:21Z) - Adaptive Robust Model Predictive Control via Uncertainty Cancellation [25.736296938185074]
We propose a learning-based robust predictive control algorithm that compensates for significant uncertainty in the dynamics.
We optimize over a class of nonlinear feedback policies inspired by certainty equivalent "estimate-and-cancel" control laws.
arXiv Detail & Related papers (2022-12-02T18:54:23Z) - Learning-enhanced Nonlinear Model Predictive Control using
Knowledge-based Neural Ordinary Differential Equations and Deep Ensembles [5.650647159993238]
In this work, we leverage deep learning tools, namely knowledge-based neural ordinary differential equations (KNODE) and deep ensembles, to improve the prediction accuracy of a model predictive control (MPC)
In particular, we learn an ensemble of KNODE models, which we refer to as the KNODE ensemble, to obtain an accurate prediction of the true system dynamics.
We show that the KNODE ensemble provides more accurate predictions and illustrate the efficacy and closed-loop performance of the proposed nonlinear MPC framework.
arXiv Detail & Related papers (2022-11-24T23:51:18Z) - Introduction to Online Control [34.77535508151501]
In online nonstochastic control, both the cost functions as well as the perturbations from the assumed dynamical model are chosen by an adversary.<n>The target is to attain low regret against the best policy in hindsight from a benchmark class of policies.
arXiv Detail & Related papers (2022-11-17T16:12:45Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
Probabilistic models such as Gaussian processes (GPs) are powerful tools to learn unknown dynamical systems from data for subsequent use in control design.
We present a novel controller synthesis for linearized GP dynamics that yields robust controllers with respect to a probabilistic stability margin.
arXiv Detail & Related papers (2021-05-17T08:36:18Z) - Adaptive Robust Model Predictive Control with Matched and Unmatched
Uncertainty [28.10549712956161]
We propose a learning-based robust predictive control algorithm that can handle large uncertainty in the dynamics for a class of discrete-time systems.
Motivated by an inability of existing learning-based predictive control algorithms to achieve safety guarantees in the presence of uncertainties of large magnitude, we achieve significant performance improvements.
arXiv Detail & Related papers (2021-04-16T17:47:02Z) - COMBO: Conservative Offline Model-Based Policy Optimization [120.55713363569845]
Uncertainty estimation with complex models, such as deep neural networks, can be difficult and unreliable.
We develop a new model-based offline RL algorithm, COMBO, that regularizes the value function on out-of-support state-actions.
We find that COMBO consistently performs as well or better as compared to prior offline model-free and model-based methods.
arXiv Detail & Related papers (2021-02-16T18:50:32Z) - Control as Hybrid Inference [62.997667081978825]
We present an implementation of CHI which naturally mediates the balance between iterative and amortised inference.
We verify the scalability of our algorithm on a continuous control benchmark, demonstrating that it outperforms strong model-free and model-based baselines.
arXiv Detail & Related papers (2020-07-11T19:44:09Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
empirical optimization is central to modern machine learning, but its role in its success is still unclear.
We show that it commonly arises in parameters of discrete multiplicative noise due to variance.
A detailed analysis is conducted in which we describe on key factors, including recent step size, and data, all exhibit similar results on state-of-the-art neural network models.
arXiv Detail & Related papers (2020-06-11T09:58:01Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
We present a novel theoretical connection between information theoretic MPC and entropy regularized RL.
We develop a Q-learning algorithm that can leverage biased models.
arXiv Detail & Related papers (2019-12-31T00:29:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.