Learning-enhanced Nonlinear Model Predictive Control using
Knowledge-based Neural Ordinary Differential Equations and Deep Ensembles
- URL: http://arxiv.org/abs/2211.13829v2
- Date: Tue, 16 May 2023 15:13:29 GMT
- Title: Learning-enhanced Nonlinear Model Predictive Control using
Knowledge-based Neural Ordinary Differential Equations and Deep Ensembles
- Authors: Kong Yao Chee, M. Ani Hsieh and Nikolai Matni
- Abstract summary: In this work, we leverage deep learning tools, namely knowledge-based neural ordinary differential equations (KNODE) and deep ensembles, to improve the prediction accuracy of a model predictive control (MPC)
In particular, we learn an ensemble of KNODE models, which we refer to as the KNODE ensemble, to obtain an accurate prediction of the true system dynamics.
We show that the KNODE ensemble provides more accurate predictions and illustrate the efficacy and closed-loop performance of the proposed nonlinear MPC framework.
- Score: 5.650647159993238
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Nonlinear model predictive control (MPC) is a flexible and increasingly
popular framework used to synthesize feedback control strategies that can
satisfy both state and control input constraints. In this framework, an
optimization problem, subjected to a set of dynamics constraints characterized
by a nonlinear dynamics model, is solved at each time step. Despite its
versatility, the performance of nonlinear MPC often depends on the accuracy of
the dynamics model. In this work, we leverage deep learning tools, namely
knowledge-based neural ordinary differential equations (KNODE) and deep
ensembles, to improve the prediction accuracy of this model. In particular, we
learn an ensemble of KNODE models, which we refer to as the KNODE ensemble, to
obtain an accurate prediction of the true system dynamics. This learned model
is then integrated into a novel learning-enhanced nonlinear MPC framework. We
provide sufficient conditions that guarantees asymptotic stability of the
closed-loop system and show that these conditions can be implemented in
practice. We show that the KNODE ensemble provides more accurate predictions
and illustrate the efficacy and closed-loop performance of the proposed
nonlinear MPC framework using two case studies.
Related papers
- Dropout MPC: An Ensemble Neural MPC Approach for Systems with Learned Dynamics [0.0]
We propose a novel sampling-based ensemble neural MPC algorithm that employs the Monte-Carlo dropout technique on the learned system model.
The method aims in general at uncertain systems with complex dynamics, where models derived from first principles are hard to infer.
arXiv Detail & Related papers (2024-06-04T17:15:25Z) - Data-driven Nonlinear Model Reduction using Koopman Theory: Integrated
Control Form and NMPC Case Study [56.283944756315066]
We propose generic model structures combining delay-coordinate encoding of measurements and full-state decoding to integrate reduced Koopman modeling and state estimation.
A case study demonstrates that our approach provides accurate control models and enables real-time capable nonlinear model predictive control of a high-purity cryogenic distillation column.
arXiv Detail & Related papers (2024-01-09T11:54:54Z) - Adaptive Robust Model Predictive Control via Uncertainty Cancellation [25.736296938185074]
We propose a learning-based robust predictive control algorithm that compensates for significant uncertainty in the dynamics.
We optimize over a class of nonlinear feedback policies inspired by certainty equivalent "estimate-and-cancel" control laws.
arXiv Detail & Related papers (2022-12-02T18:54:23Z) - Neural ODEs as Feedback Policies for Nonlinear Optimal Control [1.8514606155611764]
We use Neural ordinary differential equations (Neural ODEs) to model continuous time dynamics as differential equations parametrized with neural networks.
We propose the use of a neural control policy posed as a Neural ODE to solve general nonlinear optimal control problems.
arXiv Detail & Related papers (2022-10-20T13:19:26Z) - A Theoretical Overview of Neural Contraction Metrics for Learning-based
Control with Guaranteed Stability [7.963506386866862]
This paper presents a neural network model of an optimal contraction metric and corresponding differential Lyapunov function.
Its innovation lies in providing formal robustness guarantees for learning-based control frameworks.
arXiv Detail & Related papers (2021-10-02T00:28:49Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
Probabilistic models such as Gaussian processes (GPs) are powerful tools to learn unknown dynamical systems from data for subsequent use in control design.
We present a novel controller synthesis for linearized GP dynamics that yields robust controllers with respect to a probabilistic stability margin.
arXiv Detail & Related papers (2021-05-17T08:36:18Z) - Adaptive Robust Model Predictive Control with Matched and Unmatched
Uncertainty [28.10549712956161]
We propose a learning-based robust predictive control algorithm that can handle large uncertainty in the dynamics for a class of discrete-time systems.
Motivated by an inability of existing learning-based predictive control algorithms to achieve safety guarantees in the presence of uncertainties of large magnitude, we achieve significant performance improvements.
arXiv Detail & Related papers (2021-04-16T17:47:02Z) - COMBO: Conservative Offline Model-Based Policy Optimization [120.55713363569845]
Uncertainty estimation with complex models, such as deep neural networks, can be difficult and unreliable.
We develop a new model-based offline RL algorithm, COMBO, that regularizes the value function on out-of-support state-actions.
We find that COMBO consistently performs as well or better as compared to prior offline model-free and model-based methods.
arXiv Detail & Related papers (2021-02-16T18:50:32Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
We propose a novel compound kernel that captures the control-affine nature of the problem.
We show that this resulting optimization problem is convex, and we call it Gaussian Process-based Control Lyapunov Function Second-Order Cone Program (GP-CLF-SOCP)
arXiv Detail & Related papers (2020-11-14T01:27:32Z) - Control as Hybrid Inference [62.997667081978825]
We present an implementation of CHI which naturally mediates the balance between iterative and amortised inference.
We verify the scalability of our algorithm on a continuous control benchmark, demonstrating that it outperforms strong model-free and model-based baselines.
arXiv Detail & Related papers (2020-07-11T19:44:09Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
We present a novel theoretical connection between information theoretic MPC and entropy regularized RL.
We develop a Q-learning algorithm that can leverage biased models.
arXiv Detail & Related papers (2019-12-31T00:29:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.