論文の概要: Reservoir Computing: A New Paradigm for Neural Networks
- arxiv url: http://arxiv.org/abs/2504.02639v1
- Date: Thu, 03 Apr 2025 14:34:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-04 12:55:44.197561
- Title: Reservoir Computing: A New Paradigm for Neural Networks
- Title(参考訳): Reservoir Computing - ニューラルネットワークの新しいパラダイム
- Authors: Felix Grezes,
- Abstract要約: 1940年代初頭、最初の人工ニューロンモデルは純粋に数学的概念として作られた。
リカレントニューラルネットワーク(RNN)は、従来のニューラルネットワークの困難を悪化させる。
これらの問題の解決策として、Reservoir Computingが登場します。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: A Literature Review of Reservoir Computing. Even before Artificial Intelligence was its own field of computational science, humanity has tried to mimic the activity of the human brain. In the early 1940s the first artificial neuron models were created as purely mathematical concepts. Over the years, ideas from neuroscience and computer science were used to develop the modern Neural Network. The interest in these models rose quickly but fell when they failed to be successfully applied to practical applications, and rose again in the late 2000s with the drastic increase in computing power, notably in the field of natural language processing, for example with the state-of-the-art speech recognizer making heavy use of deep neural networks. Recurrent Neural Networks (RNNs), a class of neural networks with cycles in the network, exacerbates the difficulties of traditional neural nets. Slow convergence limiting the use to small networks, and difficulty to train through gradient-descent methods because of the recurrent dynamics have hindered research on RNNs, yet their biological plausibility and their capability to model dynamical systems over simple functions makes then interesting for computational researchers. Reservoir Computing emerges as a solution to these problems that RNNs traditionally face. Promising to be both theoretically sound and computationally fast, Reservoir Computing has already been applied successfully to numerous fields: natural language processing, computational biology and neuroscience, robotics, even physics. This survey will explore the history and appeal of both traditional feed-forward and recurrent neural networks, before describing the theory and models of this new reservoir computing paradigm. Finally recent papers using reservoir computing in a variety of scientific fields will be reviewed.
- Abstract(参考訳): 専門は貯留層計算学。
人工知能が独自の計算科学分野になる前から、人類は人間の脳の活動を模倣しようとしてきた。
1940年代初頭、最初の人工ニューロンモデルは純粋に数学的概念として作られた。
長年にわたり、神経科学とコンピュータ科学のアイデアが現代のニューラルネットワークの開発に使われてきた。
これらのモデルへの関心は急速に高まったが、実践的な応用にうまく適用できなかったために低下し、2000年代後半にはコンピュータの能力が大幅に向上し、特に自然言語処理の分野では、ディープニューラルネットワークを多用する最先端の音声認識器などにおいて再び上昇した。
リカレントニューラルネットワーク(Recurrent Neural Networks, RNN)は、ネットワーク内のサイクルを持つニューラルネットワークのクラスであり、従来のニューラルネットワークの難しさをさらに高める。
緩やかな収束が小さなネットワークに制限され、またリカレント力学がRNNの研究を妨げているため、勾配-退化法の訓練が困難になっているが、その生物学的な妥当性と単純な関数上の力学系をモデル化する能力は、計算研究者にとって興味深い。
Reservoir Computingは、従来のRNNが直面するこれらの問題の解決策として現れます。
理論上は健全で計算が速いと仮定して、Reservoir Computingは自然言語処理、計算生物学、神経科学、ロボティクス、物理学など、多くの分野に適用されている。
このサーベイは、この新しい貯水池コンピューティングパラダイムの理論とモデルを記述する前に、従来のフィードフォワードとリカレントニューラルネットワークの両方の歴史と魅力を探求する。
最後に, 種々の科学分野における貯水池計算を応用した最近の論文について概説する。
関連論文リスト
- Hebbian Learning based Orthogonal Projection for Continual Learning of
Spiking Neural Networks [74.3099028063756]
我々は,側方接続とヘビアン学習に基づくニューラル操作を用いた新しい手法を開発した。
我々は,反復する側方接続におけるヘビアン学習と反ヘビアン学習が,神経活動の主部分空間を効果的に抽出できることを示した。
我々の手法は、ほとんど忘れることなくニューラルネットワークをスパイクするために一貫して解決する。
論文 参考訳(メタデータ) (2024-02-19T09:29:37Z) - Computational and Storage Efficient Quadratic Neurons for Deep Neural
Networks [10.379191500493503]
実験により、提案した二次ニューロン構造は、様々なタスクにおいて優れた計算効率と記憶効率を示すことが示された。
本研究は、2次計算情報の高度活用によって区別される2次ニューロンアーキテクチャを導入する。
論文 参考訳(メタデータ) (2023-06-10T11:25:31Z) - Physics-Guided, Physics-Informed, and Physics-Encoded Neural Networks in
Scientific Computing [0.0]
コンピュータパワーの最近の進歩は、機械学習とディープラーニングを使って科学計算を進歩させることを可能にした。
固有のアーキテクチャのため、従来のニューラルネットワークは、データがスパースである場合には、うまくトレーニングされ、スコープ化できない。
ニューラルネットワークは、物理的駆動あるいは知識に基づく制約を消化するための強力な基盤を提供する。
論文 参考訳(メタデータ) (2022-11-14T15:44:07Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - Neuromorphic Artificial Intelligence Systems [58.1806704582023]
フォン・ノイマンアーキテクチャと古典的ニューラルネットワークに基づく現代のAIシステムは、脳と比較して多くの基本的な制限がある。
この記事では、そのような制限と、それらが緩和される方法について論じる。
これは、これらの制限が克服されている現在利用可能なニューロモーフィックAIプロジェクトの概要を示す。
論文 参考訳(メタデータ) (2022-05-25T20:16:05Z) - Neurocompositional computing: From the Central Paradox of Cognition to a
new generation of AI systems [120.297940190903]
AIの最近の進歩は、限られた形態のニューロコンフォメーションコンピューティングの使用によってもたらされている。
ニューロコンポジションコンピューティングの新しい形式は、より堅牢で正確で理解しやすいAIシステムを生み出します。
論文 参考訳(メタデータ) (2022-05-02T18:00:10Z) - Mapping and Validating a Point Neuron Model on Intel's Neuromorphic
Hardware Loihi [77.34726150561087]
インテルの第5世代ニューロモルフィックチップ「Loihi」の可能性について検討する。
Loihiは、脳内のニューロンをエミュレートするスパイキングニューラルネットワーク(SNN)という新しいアイデアに基づいている。
Loihiは従来のシミュレーションを非常に効率的に再現し、ネットワークが大きくなるにつれて、時間とエネルギーの両方のパフォーマンスにおいて顕著にスケールする。
論文 参考訳(メタデータ) (2021-09-22T16:52:51Z) - Neural Networks, Artificial Intelligence and the Computational Brain [0.0]
本研究では、生物ニューロンのシミュレータとしてのANNの概念を検討する。
また、なぜ脳のような知能が必要なのか、そしてそれが計算フレームワークとどのように異なるのかを探求する。
論文 参考訳(メタデータ) (2020-12-25T05:56:41Z) - Neuromorphic Processing and Sensing: Evolutionary Progression of AI to
Spiking [0.0]
スパイキングニューラルネットワークアルゴリズムは、計算と電力要求の一部を利用して高度な人工知能を実装することを約束する。
本稿では,スパイクに基づくニューロモルフィック技術の理論的研究について解説し,ハードウェアプロセッサ,ソフトウェアプラットフォーム,ニューロモルフィックセンシングデバイスの現状について概説する。
プログレクションパスは、現在の機械学習スペシャリストがスキルセットを更新し、現在の世代のディープニューラルネットワークからSNNへの分類または予測モデルを作成するために舗装されている。
論文 参考訳(メタデータ) (2020-07-10T20:54:42Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
スパイキングニューラルネットワークは、ニューロンとシナプスの操作原理を模倣する認知アルゴリズムである。
スパイキングニューラルネットワークのハードウェア実装の現状について述べる。
本稿では,これらのイベント駆動アルゴリズムの特性をハードウェアレベルで活用するための戦略について論じる。
論文 参考訳(メタデータ) (2020-05-04T13:24:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。