Quantum Approximate Multi-Objective Optimization
- URL: http://arxiv.org/abs/2503.22797v1
- Date: Fri, 28 Mar 2025 18:00:25 GMT
- Title: Quantum Approximate Multi-Objective Optimization
- Authors: Ayse Kotil, Elijah Pelofske, Stephanie Riedmüller, Daniel J. Egger, Stephan Eidenbenz, Thorsten Koch, Stefan Woerner,
- Abstract summary: Multi-objective optimization represents a compelling problem class to analyze with quantum computers.<n>In this work, we use low-depth Quantum Approximate Optimization Algorithm to approximate the optimal Pareto front of certain multi-objective weighted maximum cut problems.<n>We demonstrate its performance on an IBM Quantum computer, as well as with Matrix Product State numerical simulation, and show its potential to outperform classical approaches.
- Score: 1.2564343689544843
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The goal of multi-objective optimization is to understand optimal trade-offs between competing objective functions by finding the Pareto front, i.e., the set of all Pareto optimal solutions, where no objective can be improved without degrading another one. Multi-objective optimization can be challenging classically, even if the corresponding single-objective optimization problems are efficiently solvable. Thus, multi-objective optimization represents a compelling problem class to analyze with quantum computers. In this work, we use low-depth Quantum Approximate Optimization Algorithm to approximate the optimal Pareto front of certain multi-objective weighted maximum cut problems. We demonstrate its performance on an IBM Quantum computer, as well as with Matrix Product State numerical simulation, and show its potential to outperform classical approaches.
Related papers
- Scalable Min-Max Optimization via Primal-Dual Exact Pareto Optimization [66.51747366239299]
We propose a smooth variant of the min-max problem based on the augmented Lagrangian.
The proposed algorithm scales better with the number of objectives than subgradient-based strategies.
arXiv Detail & Related papers (2025-03-16T11:05:51Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Variational Quantum Multi-Objective Optimization [5.381539115778766]
We present a variational quantum optimization algorithm to solve discrete multi-objective optimization problems on quantum computers.
We show the effectiveness of the proposed algorithm on several benchmark problems with up to five objectives.
arXiv Detail & Related papers (2023-12-21T18:59:21Z) - qPOTS: Efficient batch multiobjective Bayesian optimization via Pareto optimal Thompson sampling [0.0]
A sample-efficient approach to solving multiobjective optimization is via process oracle (GP) surrogates and MOBOOTS$.<n>We propose a Thompson sampling (TS) based approach ($qtextttPOTS$)<n>$qtextttPOTS$ solves a cheap multiobjective optimization on the GP posteriors with evolutionary approaches.
arXiv Detail & Related papers (2023-10-24T12:35:15Z) - Optimization on Pareto sets: On a theory of multi-objective optimization [7.907376287850398]
In multi-objective optimization, a single decision vector must balance the trade-offs between many objectives.
We consider a more practically significant optimization problem, where the goal is to optimize a constrained set.
arXiv Detail & Related papers (2023-08-04T05:55:52Z) - Multi-objective optimisation via the R2 utilities [4.12484724941528]
We show how to recast the multi-objective optimisation problem into a single-objective optimisation problem defined over sets.
An appropriate class of objective functions for this new problem are the R2 utilities, which are utility functions that are defined as a weighted integral over the scalarised optimisation problems.
We then analyse the performance of these greedy algorithms both theoretically and empirically.
arXiv Detail & Related papers (2023-05-19T16:01:35Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z) - A Study of Scalarisation Techniques for Multi-Objective QUBO Solving [0.0]
Quantum and quantum-inspired optimisation algorithms have shown promising performance when applied to academic benchmarks as well as real-world problems.
However, QUBO solvers are single objective solvers. To make them more efficient at solving problems with multiple objectives, a decision on how to convert such multi-objective problems to single-objective problems need to be made.
arXiv Detail & Related papers (2022-10-20T14:54:37Z) - Multi-objective and multi-fidelity Bayesian optimization of laser-plasma
acceleration [0.0]
We present first results on multi-objective optimization of a simulated laser-plasma accelerator.
We find that multi-objective optimization is equal or even superior in performance to its single-objective counterparts.
We significantly reduce the computational costs of the optimization by choosing the resolution and box size of the simulations dynamically.
arXiv Detail & Related papers (2022-10-07T12:09:09Z) - Leveraging Trust for Joint Multi-Objective and Multi-Fidelity
Optimization [0.0]
This paper investigates a novel approach to Bayesian multi-objective and multi-fidelity (MOMF) optimization.
We suggest the innovative use of a trust metric to support simultaneous optimization of multiple objectives and data sources.
Our methods offer broad applicability in solving simulation problems in fields such as plasma physics and fluid dynamics.
arXiv Detail & Related papers (2021-12-27T20:55:26Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - On the Global Optimality of Model-Agnostic Meta-Learning [133.16370011229776]
Model-a meta-learning (MAML) formulates meta-learning as a bilevel optimization problem, where the inner level solves each subtask based on a shared prior.
We characterize optimality of the stationary points attained by MAML for both learning and supervised learning, where the inner-level outer-level problems are solved via first-order optimization methods.
arXiv Detail & Related papers (2020-06-23T17:33:14Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.