論文の概要: 3D Scene Understanding Through Local Random Access Sequence Modeling
- arxiv url: http://arxiv.org/abs/2504.03875v1
- Date: Fri, 04 Apr 2025 18:59:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 14:11:41.146073
- Title: 3D Scene Understanding Through Local Random Access Sequence Modeling
- Title(参考訳): 局所ランダムアクセスシーケンスモデリングによる3次元シーン理解
- Authors: Wanhee Lee, Klemen Kotar, Rahul Mysore Venkatesh, Jared Watrous, Honglin Chen, Khai Loong Aw, Daniel L. K. Yamins,
- Abstract要約: 単一画像からの3Dシーン理解は、コンピュータビジョンにおいて重要な問題である。
本稿では、LRAS(Local Random Access Sequence)モデリングと呼ばれる自己回帰生成手法を提案する。
光学フローを3次元シーン編集の中間表現として利用することにより、LRASが最先端の新規ビュー合成と3次元オブジェクト操作機能を実現することを示す。
- 参考スコア(独自算出の注目度): 12.689247678229382
- License:
- Abstract: 3D scene understanding from single images is a pivotal problem in computer vision with numerous downstream applications in graphics, augmented reality, and robotics. While diffusion-based modeling approaches have shown promise, they often struggle to maintain object and scene consistency, especially in complex real-world scenarios. To address these limitations, we propose an autoregressive generative approach called Local Random Access Sequence (LRAS) modeling, which uses local patch quantization and randomly ordered sequence generation. By utilizing optical flow as an intermediate representation for 3D scene editing, our experiments demonstrate that LRAS achieves state-of-the-art novel view synthesis and 3D object manipulation capabilities. Furthermore, we show that our framework naturally extends to self-supervised depth estimation through a simple modification of the sequence design. By achieving strong performance on multiple 3D scene understanding tasks, LRAS provides a unified and effective framework for building the next generation of 3D vision models.
- Abstract(参考訳): シングルイメージからの3Dシーンの理解は、グラフィックス、拡張現実、ロボット工学における多くの下流アプリケーションを持つコンピュータビジョンにおける重要な問題である。
拡散に基づくモデリングアプローチは将来性を示しているが、オブジェクトとシーンの一貫性を維持するのに苦労することが多い。
このような制約に対処するため,ローカルパッチ量子化とランダム順序付きシーケンス生成を用いたローカルランダムアクセスシーケンス(LRAS)モデリングという自動回帰生成手法を提案する。
光学フローを3次元シーン編集の中間表現として利用することにより、LRASが最先端の新規ビュー合成と3次元オブジェクト操作機能を実現することを示す。
さらに,本フレームワークは,シーケンス設計の簡易な修正により,自己教師付き深度推定に自然に拡張されていることを示す。
複数の3Dシーン理解タスクにおいて強力なパフォーマンスを実現することにより、LRASは次世代の3Dビジョンモデルを構築するための統一的で効果的なフレームワークを提供する。
関連論文リスト
- BloomScene: Lightweight Structured 3D Gaussian Splatting for Crossmodal Scene Generation [16.00575923179227]
3Dシーンは非常に複雑な構造を持ち、出力が密度が高く、一貫性があり、必要な全ての構造を含むことを保証する必要がある。
現在の3Dシーン生成法は、事前訓練されたテキスト・画像拡散モデルと単眼深度推定器に依存している。
クロスモーダルシーン生成のための軽量な3次元ガウススプラッティングであるBloomSceneを提案する。
論文 参考訳(メタデータ) (2025-01-15T11:33:34Z) - F3D-Gaus: Feed-forward 3D-aware Generation on ImageNet with Cycle-Aggregative Gaussian Splatting [35.625593119642424]
本稿では,モノケプラーデータセットから3次元認識を一般化する問題に取り組む。
画素整列型ガウススプラッティングに基づく新しいフィードフォワードパイプラインを提案する。
また,学習した3次元表現において,クロスビューの一貫性を強制する自己教師付きサイクル集約的制約を導入する。
論文 参考訳(メタデータ) (2025-01-12T04:44:44Z) - VideoLifter: Lifting Videos to 3D with Fast Hierarchical Stereo Alignment [63.21396416244634]
VideoLifterは、ローカルからグローバルへの戦略を断片的に活用する、新しいビデオから3Dパイプラインである。
再建プロセスを大幅に加速し、訓練時間を82%以上削減し、現在のSOTA法よりも視覚的品質を向上した。
論文 参考訳(メタデータ) (2025-01-03T18:52:36Z) - Architect: Generating Vivid and Interactive 3D Scenes with Hierarchical 2D Inpainting [47.014044892025346]
Architectは、拡散ベースの2Dイメージのインペイントを活用する、複雑で現実的な3Dエボダイド環境を作成する、生成フレームワークである。
我々のパイプラインはさらに階層的かつ反復的な塗装プロセスに拡張され、大きな家具や小さな物体の配置を連続的に生成し、シーンを豊かにする。
論文 参考訳(メタデータ) (2024-11-14T22:15:48Z) - DreamScape: 3D Scene Creation via Gaussian Splatting joint Correlation Modeling [23.06464506261766]
テキストから3Dシーンを生成するDreamScapeを提案する。
LLMを用いたテキストから意味的プリミティブ、空間変換、関係をエンコードする3Dガウスガイドを使用する。
DreamScapeは最先端のパフォーマンスを実現し、高忠実でコントロール可能な3Dシーン生成を可能にする。
論文 参考訳(メタデータ) (2024-04-14T12:13:07Z) - 3D-SceneDreamer: Text-Driven 3D-Consistent Scene Generation [51.64796781728106]
本稿では,2次元拡散モデル以前の自然画像と,現在のシーンのグローバルな3次元情報を利用して,高品質で新しいコンテンツを合成する生成的精細化ネットワークを提案する。
提案手法は,視覚的品質と3次元の整合性を改善した多種多様なシーン生成と任意のカメラトラジェクトリをサポートする。
論文 参考訳(メタデータ) (2024-03-14T14:31:22Z) - Denoising Diffusion via Image-Based Rendering [54.20828696348574]
実世界の3Dシーンの高速かつ詳細な再構築と生成を可能にする最初の拡散モデルを提案する。
まず、大きな3Dシーンを効率よく正確に表現できる新しいニューラルシーン表現であるIBプレーンを導入する。
第二に,2次元画像のみを用いて,この新たな3次元シーン表現の事前学習を行うためのデノイング拡散フレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-05T19:00:45Z) - CG3D: Compositional Generation for Text-to-3D via Gaussian Splatting [57.14748263512924]
CG3Dは、スケーラブルな3Dアセットを合成的に生成する手法である。
ガンマ放射場は、オブジェクトの合成を可能にするためにパラメータ化され、意味的および物理的に一貫したシーンを可能にする能力を持っている。
論文 参考訳(メタデータ) (2023-11-29T18:55:38Z) - GAUDI: A Neural Architect for Immersive 3D Scene Generation [67.97817314857917]
GAUDIは、動くカメラから没入的にレンダリングできる複雑な3Dシーンの分布をキャプチャできる生成モデルである。
GAUDIは,複数のデータセットにまたがる非条件生成環境において,最先端の性能が得られることを示す。
論文 参考訳(メタデータ) (2022-07-27T19:10:32Z) - Vision Transformer for NeRF-Based View Synthesis from a Single Input
Image [49.956005709863355]
本稿では,グローバルな特徴と局所的な特徴を両立させ,表現力のある3D表現を実現することを提案する。
新たなビューを合成するために,学習した3次元表現に条件付き多層パーセプトロン(MLP)ネットワークを訓練し,ボリュームレンダリングを行う。
提案手法は,1つの入力画像のみから新しいビューを描画し,複数のオブジェクトカテゴリを1つのモデルで一般化することができる。
論文 参考訳(メタデータ) (2022-07-12T17:52:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。