論文の概要: Stochastic Variational Inference with Tuneable Stochastic Annealing
- arxiv url: http://arxiv.org/abs/2504.03902v1
- Date: Fri, 04 Apr 2025 19:46:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 14:14:54.597083
- Title: Stochastic Variational Inference with Tuneable Stochastic Annealing
- Title(参考訳): Tuneable Stochastic Annealing による確率的変分推定
- Authors: John Paisley, Ghazal Fazelnia, Brian Barr,
- Abstract要約: 本稿では,大小両方のデータセットに適用可能な修正変分推論(SVI)手法を提案する。
我々は、SVI において、バッチサイズが大きいほど、ガウス的ノイズはより略式になるが、その分散は小さくなるという事実に動機づけられている。
そこで本研究では,局所最適解を回避し,より正確な勾配を求めるためのデータ情報を得るため,より大きな分散雑音の両目標を達成するための簡単な手法を提案する。
- 参考スコア(独自算出の注目度): 1.6385815610837167
- License:
- Abstract: In this paper, we exploit the observation that stochastic variational inference (SVI) is a form of annealing and present a modified SVI approach -- applicable to both large and small datasets -- that allows the amount of annealing done by SVI to be tuned. We are motivated by the fact that, in SVI, the larger the batch size the more approximately Gaussian is the intrinsic noise, but the smaller its variance. This low variance reduces the amount of annealing which is needed to escape bad local optimal solutions. We propose a simple method for achieving both goals of having larger variance noise to escape bad local optimal solutions and more data information to obtain more accurate gradient directions. The idea is to set an actual batch size, which may be the size of the data set, and a smaller effective batch size that matches the larger level of variance at this smaller batch size. The result is an approximation to the maximum entropy stochastic gradient at this variance level. We theoretically motivate our approach for the framework of conjugate exponential family models and illustrate the method empirically on the probabilistic matrix factorization collaborative filter, the Latent Dirichlet Allocation topic model, and the Gaussian mixture model.
- Abstract(参考訳): 本稿では,確率的変分推論(SVI)がアニーリングの一形態であり,SVIによるアニーリング量の調整を可能にする改良されたSVIアプローチ(大小両方のデータセットに適用可能な)を提案する。
我々は、SVI において、バッチサイズが大きいほど、ガウス的ノイズが大まかになるが、その分散が小さくなるという事実に動機づけられている。
この低分散は、悪い局所最適解を逃れるために必要となるアニール量を減らす。
そこで本研究では,局所最適解を回避し,より正確な勾配を求めるためのデータ情報を得るため,より大きな分散雑音の両目標を達成するための簡単な手法を提案する。
このアイデアは、データセットのサイズである実際のバッチサイズと、この小さなバッチサイズでの大きな分散レベルに一致する、より効果的なバッチサイズを設定することです。
結果は、この分散レベルでの最大エントロピー確率勾配の近似である。
我々は,指数関数型ファミリーモデルの枠組みに対する我々のアプローチを理論的に動機付け,確率行列因数分解協調フィルタ,潜在ディリクレ割当話題モデル,ガウス混合モデルについて実証的に説明する。
関連論文リスト
- Variational Learning of Gaussian Process Latent Variable Models through Stochastic Gradient Annealed Importance Sampling [22.256068524699472]
本研究では,これらの問題に対処するために,Annealed Importance Smpling (AIS)アプローチを提案する。
シークエンシャルモンテカルロサンプリング器とVIの強度を組み合わせることで、より広い範囲の後方分布を探索し、徐々にターゲット分布に接近する。
実験結果から,本手法はより厳密な変動境界,高い対数類似度,より堅牢な収束率で最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2024-08-13T08:09:05Z) - A Bayesian Approach Toward Robust Multidimensional Ellipsoid-Specific Fitting [0.0]
本研究は, ノイズおよび外周波の汚染における散乱データに多次元楕円体を適合させる, 新規で効果的な方法を提案する。
楕円体領域内でのプリミティブパラメータの探索を制約するために、均一な事前分布を組み込む。
本研究では, 顕微鏡細胞計数, 3次元再構成, 幾何学的形状近似, 磁力計の校正タスクなど, 幅広い応用に応用する。
論文 参考訳(メタデータ) (2024-07-27T14:31:51Z) - Sharp detection of low-dimensional structure in probability measures via dimensional logarithmic Sobolev inequalities [0.5592394503914488]
本稿では、所定の基準測度$mu$の摂動として、目標測度$pi$を同定し、近似する手法を提案する。
我々の主な貢献は、多元対数ソボレフ不等式(LSI)と、このアンザッツとの近似との接続を明らかにすることである。
論文 参考訳(メタデータ) (2024-06-18T20:02:44Z) - Implicit Manifold Gaussian Process Regression [49.0787777751317]
ガウス過程の回帰は、よく校正された不確実性推定を提供するために広く用いられている。
これは、データが実際に存在する暗黙の低次元多様体のため、高次元データに苦しむ。
本稿では,データ(ラベル付きおよびラベルなし)から直接暗黙構造を完全に微分可能な方法で推定できる手法を提案する。
論文 参考訳(メタデータ) (2023-10-30T09:52:48Z) - Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood
Estimation for Latent Gaussian Models [69.22568644711113]
我々は,モンテカルロサンプリングと反復線形解法を組み合わせた確率的アンローリングを導入し,行列逆転を回避した。
理論的解析により,解法の繰り返しによる解法の解法と逆転が最大値推定の勾配推定を高速化することを示した。
シミュレーションおよび実データ実験において、確率的アンロールは、モデル性能の損失を最小限に抑えながら、勾配EMよりも桁違いに高速な潜在ガウスモデルを学習することを示した。
論文 参考訳(メタデータ) (2023-06-05T21:08:34Z) - Compound Batch Normalization for Long-tailed Image Classification [77.42829178064807]
本稿では,ガウス混合に基づく複合バッチ正規化法を提案する。
機能空間をより包括的にモデル化し、ヘッドクラスの優位性を減らすことができる。
提案手法は,画像分類における既存の手法よりも優れている。
論文 参考訳(メタデータ) (2022-12-02T07:31:39Z) - Preferential Subsampling for Stochastic Gradient Langevin Dynamics [3.158346511479111]
勾配MCMCは、データの小さな一様重み付きサブサンプルを持つ対数姿勢の勾配をバイアスなく見積もっている。
得られた勾配推定器は、高いばらつきおよび衝撃サンプリング性能を示すことができる。
このような手法は,使用中の平均サブサンプルサイズを大幅に削減しつつ,同じレベルの精度を維持することができることを示す。
論文 参考訳(メタデータ) (2022-10-28T14:56:18Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sample (AIS) と関連するアルゴリズムは、限界推定のための非常に効果的なツールである。
差別性は、目的として限界確率を最適化する可能性を認めるため、望ましい性質である。
我々はメトロポリス・ハスティングスのステップを放棄して微分可能アルゴリズムを提案し、ミニバッチ計算をさらに解き放つ。
論文 参考訳(メタデータ) (2021-07-21T17:10:14Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
汎用性を維持しつつ高い忠実度近似を提供する,スケーラブルな変分ガウス過程近似を導入する。
様々な回帰問題や分類問題において,本手法は変換やリフレクションなどの入力空間対称性を活用できることを実証する。
提案手法は, 純粋なGPモデルのうち, CIFAR-10 の最先端化を実現する。
論文 参考訳(メタデータ) (2021-06-10T18:17:57Z) - Carath\'eodory Sampling for Stochastic Gradient Descent [79.55586575988292]
本稿では,Tchakaloff と Carath'eodory の古典的な結果から着想を得た手法を提案する。
我々は、測定値の低減を行う降下ステップを適応的に選択する。
これをBlock Coordinate Descentと組み合わせることで、測定の削減を極めて安価に行えるようにします。
論文 参考訳(メタデータ) (2020-06-02T17:52:59Z) - Amortized variance reduction for doubly stochastic objectives [17.064916635597417]
複素確率モデルにおける近似推論は二重目的関数の最適化を必要とする。
現在のアプローチでは、ミニバッチがサンプリング性にどのように影響するかを考慮せず、結果として準最適分散が減少する。
本稿では,認識ネットワークを用いて各ミニバッチに対して最適な制御変数を安価に近似する手法を提案する。
論文 参考訳(メタデータ) (2020-03-09T13:23:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。