Direct entanglement ansatz learning (DEAL) with ZNE on error-prone superconducting qubits
- URL: http://arxiv.org/abs/2504.04021v1
- Date: Sat, 05 Apr 2025 02:05:45 GMT
- Title: Direct entanglement ansatz learning (DEAL) with ZNE on error-prone superconducting qubits
- Authors: Ziqing Guo, Steven Rayan, Wenshuo Hu, Ziwen Pan,
- Abstract summary: We introduce Directanglement Ansatz Learning ( DEAL), which exploits a quantum entanglement-based ansatz to explore intricate latent spaces and zero noise extrapolation (ZNE)<n>Deal increases the success rate by up to 14% compared to the classic quantum approximation optimization algorithm.<n>In addition, we demonstrate the capability of DEAL to provide near optimum ground energy solutions for travelling salesman, knapsack, and maxcut problems.
- Score: 0.05999777817331316
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum combinatorial optimization algorithms typically face challenges due to complex optimization landscapes featuring numerous local minima, exponentially scaling latent spaces, and susceptibility to quantum hardware noise. In this study, we introduce Direct Entanglement Ansatz Learning (DEAL), wherein we employ a direct mapping from quadratic unconstrained binary problem parameters to quantum ansatz angles for cost and mixer hamiltonians, which improves the convergence rate towards the optimal solution. Our approach exploits a quantum entanglement-based ansatz to effectively explore intricate latent spaces and zero noise extrapolation (ZNE) to greatly mitigate the randomness caused by crosstalk and coherence errors. Our experimental evaluation demonstrates that DEAL increases the success rate by up to 14% compared to the classic quantum approximation optimization algorithm while also controlling the error variance. In addition, we demonstrate the capability of DEAL to provide near optimum ground energy solutions for travelling salesman, knapsack, and maxcut problems, which facilitates novel paradigms for solving relevant NP-hard problems and extends the practical applicability of quantum optimization using noisy quantum hardware.
Related papers
- A Comparative Study of Quantum Optimization Techniques for Solving Combinatorial Optimization Benchmark Problems [4.266376725904727]
We introduce a comprehensive benchmarking framework designed to evaluate quantum optimization techniques against well-established NP-hard problems.
Our framework focuses on key problem classes, including the Multi-Dimensional Knapsack Problem (MDKP), Maximum Independent Set (MIS), Quadratic Assignment Problem (QAP), and Market Share Problem (MSP)
arXiv Detail & Related papers (2025-03-15T13:02:22Z) - Analog QAOA with Bayesian Optimisation on a neutral atom QPU [0.0]
We implement the Quantum Approximate optimisation algorithm in its analog form to solve the Maximum Independent Set problem.
We evaluate the approach through a combination of simulations and experimental runs on Pasqal's first commercial quantum processing unit, Orion Alpha.
Results show that a limited number of measurements still allows for a quick convergence to a solution, making it a viable solution for resource-efficient scenarios.
arXiv Detail & Related papers (2025-01-27T17:23:52Z) - Differentiable Quantum Computing for Large-scale Linear Control [26.118874431217165]
We introduce an end-to-end quantum algorithm for linear-quadratic control with provable speedups.
Our algorithm, based on a policy gradient method, incorporates a novel quantum subroutine for solving the matrix Lyapunov equation.
arXiv Detail & Related papers (2024-11-03T00:54:33Z) - Bias-field digitized counterdiabatic quantum optimization [39.58317527488534]
We call this protocol bias-field digitizeddiabatic quantum optimization (BF-DCQO)
Our purely quantum approach eliminates the dependency on classical variational quantum algorithms.
It achieves scaling improvements in ground state success probabilities, increasing by up to two orders of magnitude.
arXiv Detail & Related papers (2024-05-22T18:11:42Z) - Performant near-term quantum combinatorial optimization [1.1999555634662633]
We present a variational quantum algorithm for solving optimization problems with linear-depth circuits.
Our algorithm uses an ansatz composed of Hamiltonian generators designed to control each term in the target quantum function.
We conclude our performant and resource-minimal approach is a promising candidate for potential quantum computational advantages.
arXiv Detail & Related papers (2024-04-24T18:49:07Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Lagrangian Duality in Quantum Optimization: Overcoming QUBO Limitations for Constrained Problems [0.0]
We propose an approach to solving constrained optimization problems based on embedding the concept of Lagrangian duality into the framework of adiabatic quantum computation.
Within the setting of circuit-model fault-tolerant quantum computation, we demonstrate that this approach achieves a quadratic improvement in circuit depth and maintains a constraint-independent circuit width.
arXiv Detail & Related papers (2023-10-06T19:09:55Z) - Quantum approximate optimization via learning-based adaptive
optimization [5.399532145408153]
Quantum approximate optimization algorithm (QAOA) is designed to solve objective optimization problems.
Our results demonstrate that the algorithm greatly outperforms conventional approximations in terms of speed, accuracy, efficiency and stability.
This work helps to unlock the full power of QAOA and paves the way toward achieving quantum advantage in practical classical tasks.
arXiv Detail & Related papers (2023-03-27T02:14:56Z) - Multiobjective variational quantum optimization for constrained
problems: an application to Cash Management [45.82374977939355]
We introduce a new method for solving optimization problems with challenging constraints using variational quantum algorithms.
We test our proposal on a real-world problem with great relevance in finance: the Cash Management problem.
Our empirical results show a significant improvement in terms of the cost of the achieved solutions, but especially in the avoidance of local minima.
arXiv Detail & Related papers (2023-02-08T17:09:20Z) - Quantum-inspired optimization for wavelength assignment [51.55491037321065]
We propose and develop a quantum-inspired algorithm for solving the wavelength assignment problem.
Our results pave the way to the use of quantum-inspired algorithms for practical problems in telecommunications.
arXiv Detail & Related papers (2022-11-01T07:52:47Z) - Constrained Optimization via Quantum Zeno Dynamics [23.391640416533455]
We introduce a technique that uses quantum Zeno dynamics to solve optimization problems with multiple arbitrary constraints, including inequalities.
We show that the dynamics of quantum optimization can be efficiently restricted to the in-constraint subspace on a fault-tolerant quantum computer.
arXiv Detail & Related papers (2022-09-29T18:00:40Z) - A Gauss-Newton based Quantum Algorithm for Combinatorial Optimization [0.0]
We present a Gauss-Newton based quantum algorithm (GNQA) for optimization problems that, under optimal conditions, rapidly converge towards one of the optimal solutions without being trapped in local minima or plateaus.
Our approach mitigates those by employing a tensor product state that accurately represents the optimal solution, and an appropriate function for the Hamiltonian, containing all the combinations of binary variables.
Numerical experiments presented here demonstrate the effectiveness of our approach, and they show that GNQA outperforms other optimization methods in both convergence properties and accuracy for all problems considered here.
arXiv Detail & Related papers (2022-03-25T23:49:31Z) - A Hybrid Quantum-Classical Algorithm for Robust Fitting [47.42391857319388]
We propose a hybrid quantum-classical algorithm for robust fitting.
Our core contribution is a novel robust fitting formulation that solves a sequence of integer programs.
We present results obtained using an actual quantum computer.
arXiv Detail & Related papers (2022-01-25T05:59:24Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.