論文の概要: OrbitZoo: Multi-Agent Reinforcement Learning Environment for Orbital Dynamics
- arxiv url: http://arxiv.org/abs/2504.04160v1
- Date: Sat, 05 Apr 2025 12:44:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-16 05:35:21.910197
- Title: OrbitZoo: Multi-Agent Reinforcement Learning Environment for Orbital Dynamics
- Title(参考訳): OrbitZoo:オービタルダイナミクスのためのマルチエージェント強化学習環境
- Authors: Alexandre Oliveira, Katarina Dyreby, Francisco Caldas, Cláudia Soares,
- Abstract要約: OrbitZooは、多機能なマルチエージェントRL環境であり、高忠実度業界標準ライブラリ上に構築されている。
衝突回避や協調操作のようなシナリオをサポートし、ロバストで正確な軌道力学を保証する。
実際の衛星星座であるスターリンクに対して検証され、実際のデータと比較すると平均絶対パーセンテージ誤差(MAPE)は0.16%に達する。
- 参考スコア(独自算出の注目度): 43.410962336636224
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The increasing number of satellites and orbital debris has made space congestion a critical issue, threatening satellite safety and sustainability. Challenges such as collision avoidance, station-keeping, and orbital maneuvering require advanced techniques to handle dynamic uncertainties and multi-agent interactions. Reinforcement learning (RL) has shown promise in this domain, enabling adaptive, autonomous policies for space operations; however, many existing RL frameworks rely on custom-built environments developed from scratch, which often use simplified models and require significant time to implement and validate the orbital dynamics, limiting their ability to fully capture real-world complexities. To address this, we introduce OrbitZoo, a versatile multi-agent RL environment built on a high-fidelity industry standard library, that enables realistic data generation, supports scenarios like collision avoidance and cooperative maneuvers, and ensures robust and accurate orbital dynamics. The environment is validated against a real satellite constellation, Starlink, achieving a Mean Absolute Percentage Error (MAPE) of 0.16% compared to real-world data. This validation ensures reliability for generating high-fidelity simulations and enabling autonomous and independent satellite operations.
- Abstract(参考訳): 衛星や軌道上の破片の増加により、宇宙の混雑が重大な問題となり、衛星の安全性と持続可能性が脅かされている。
衝突回避、ステーションキーピング、軌道操作といった課題は、動的不確実性やマルチエージェント相互作用を扱うための高度な技術を必要とする。
しかし、既存のRLフレームワークの多くは、スクラッチから開発されたカスタムビルド環境に依存しており、しばしば単純化されたモデルを使用し、軌道力学の実装と検証にかなりの時間を要するため、現実の複雑さを完全に捉える能力が制限されている。
そこで本研究では,高忠実度産業標準ライブラリ上に構築された多目的マルチエージェントRL環境であるOrbitZooを紹介し,現実的なデータ生成を実現するとともに,衝突回避や協調操作といったシナリオをサポートし,ロバストで正確な軌道力学を保証する。
この環境は、実際の衛星コンステレーションであるスターリンクに対して検証され、実際のデータと比較して平均絶対パーセンテージ誤差(MAPE)が0.16%に達する。
この検証により、高忠実度シミュレーションを生成し、自律的かつ独立した衛星操作を可能にする信頼性が確保される。
関連論文リスト
- Multi-Agent Path Finding in Continuous Spaces with Projected Diffusion Models [57.45019514036948]
MAPF(Multi-Agent Path Finding)は、ロボット工学における基本的な問題である。
連続空間におけるMAPFの拡散モデルと制約付き最適化を統合する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-12-23T21:27:19Z) - On-orbit Servicing for Spacecraft Collision Avoidance With Autonomous Decision Making [0.0]
本研究は、宇宙船衝突回避演習(CAM)を支援するために、AIによるOOSミッションの実装を開発する。
本稿では、RL(Reinforcement Learning)を用いて訓練された自律型サーベイラを提案し、ターゲット衛星と宇宙デブリの衝突を自律的に検出し、絶滅危惧衛星とのランデブーとドッキングを行い、最適なCAMを実行する。
論文 参考訳(メタデータ) (2024-09-25T17:40:37Z) - ReGentS: Real-World Safety-Critical Driving Scenario Generation Made Stable [88.08120417169971]
機械学習に基づく自律運転システムは、現実世界のデータでは稀な安全クリティカルなシナリオで課題に直面していることが多い。
この研究は、軌道最適化によって複雑な現実世界の通常のシナリオを変更することによって、安全クリティカルな運転シナリオを生成することを検討する。
提案手法は、頑健なプランナーの訓練には役に立たない非現実的な発散軌道と避けられない衝突シナリオに対処する。
論文 参考訳(メタデータ) (2024-09-12T08:26:33Z) - Integrating DeepRL with Robust Low-Level Control in Robotic Manipulators for Non-Repetitive Reaching Tasks [0.24578723416255746]
ロボット工学では、現代の戦略は学習に基づくもので、複雑なブラックボックスの性質と解釈可能性の欠如が特徴である。
本稿では, 深部強化学習(DRL)に基づく衝突のない軌道プランナと, 自動調整型低レベル制御戦略を統合することを提案する。
論文 参考訳(メタデータ) (2024-02-04T15:54:03Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
制御可能なクローズドループ安全クリティカルシミュレーションフレームワークであるSAFE-SIMを紹介する。
提案手法は,1)現実の環境を深く反映した現実的な長距離安全クリティカルシナリオの生成,2)より包括的でインタラクティブな評価のための制御可能な敵行動の提供,の2つの利点をもたらす。
複数のプランナにまたがるnuScenesとnuPlanデータセットを使用して、我々のフレームワークを実証的に検証し、リアリズムと制御性の両方の改善を実証した。
論文 参考訳(メタデータ) (2023-12-31T04:14:43Z) - Spacecraft Autonomous Decision-Planning for Collision Avoidance: a
Reinforcement Learning Approach [0.0]
本研究は、強化学習技術に基づく宇宙船における自律的なCA意思決定機能の実装を提案する。
提案フレームワークは,軌道上の破片の状態を不完全な監視し,正確な衝突回避策(CAM)を実行するためのポリシーをAIシステムが効果的に学習できるようにする。
目的は、CAMを自律的に実施するための意思決定プロセスを、人間の介入なしに宇宙船に委譲することである。
論文 参考訳(メタデータ) (2023-10-29T10:15:33Z) - FedSpace: An Efficient Federated Learning Framework at Satellites and
Ground Stations [10.250105527148731]
低軌道(LEO)衛星の大規模な展開は、大量の地球画像やセンサーデータを収集する。
ダウンリンク帯域の制限、疎結合性、画像解像度の正規化制約のため、高解像度画像をダウンロードし、これらの機械学習モデルを地上で訓練することは不可能であることが多い。
本稿では,地上局と衛星が収集した画像を衛星上で共有することなく,グローバルMLモデルを協調訓練するフェデレートラーニング(FL)を提案する。
論文 参考訳(メタデータ) (2022-02-02T20:09:27Z) - Risk-based implementation of COLREGs for autonomous surface vehicles
using deep reinforcement learning [1.304892050913381]
深層強化学習(DRL)は幅広い応用の可能性を示している。
本研究は,海上衝突防止国際規則(COLREG)のサブセットをDRLに基づく経路追従と障害物回避システムに組み込んだものである。
得られた自律エージェントは、訓練シナリオ、孤立した遭遇状況、実世界のシナリオのAISに基づくシミュレーションにおいて、経路追従とCOLREG準拠の衝突回避を動的に補間する。
論文 参考訳(メタデータ) (2021-11-30T21:32:59Z) - First Steps: Latent-Space Control with Semantic Constraints for
Quadruped Locomotion [73.37945453998134]
従来の四重化制御のアプローチでは、単純化された手作りのモデルが採用されている。
これにより、有効な運動範囲が縮小されているため、ロボットの能力が大幅に低下する。
この研究において、これらの課題は、構造化潜在空間における最適化として四重化制御をフレーミングすることによって解決される。
深い生成モデルは、実現可能な関節構成の統計的表現を捉え、一方、複雑な動的および終端的制約は高レベルな意味的指標によって表現される。
実世界とシミュレーションの両方で最適化された移動軌跡の実現可能性を検証する。
論文 参考訳(メタデータ) (2020-07-03T07:04:18Z) - A Spatial-Temporal Attentive Network with Spatial Continuity for
Trajectory Prediction [74.00750936752418]
空間連続性をもつ空間時間減衰ネットワーク(STAN-SC)という新しいモデルを提案する。
まず、最も有用かつ重要な情報を探るために、空間的時間的注意機構を提示する。
第2に、生成軌道の空間的連続性を維持するために、シーケンスと瞬間状態情報に基づく共同特徴系列を実行する。
論文 参考訳(メタデータ) (2020-03-13T04:35:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。