Statistical Management of the False Discovery Rate in Medical Instance Segmentation Based on Conformal Risk Control
- URL: http://arxiv.org/abs/2504.04482v2
- Date: Sun, 27 Apr 2025 15:17:37 GMT
- Title: Statistical Management of the False Discovery Rate in Medical Instance Segmentation Based on Conformal Risk Control
- Authors: Mengxia Dai, Wenqian Luo, Tianyang Li,
- Abstract summary: Instance segmentation plays a pivotal role in medical image analysis by enabling precise localization and delineation of lesions, tumors, and anatomical structures.<n>Deep learning models such as Mask R-CNN and BlendMask have achieved remarkable progress, but their application in high-risk medical scenarios remains constrained by confidence calibration issues.<n>We propose a robust quality control framework based on conformal prediction theory to address this challenge.
- Score: 2.4578723416255754
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Instance segmentation plays a pivotal role in medical image analysis by enabling precise localization and delineation of lesions, tumors, and anatomical structures. Although deep learning models such as Mask R-CNN and BlendMask have achieved remarkable progress, their application in high-risk medical scenarios remains constrained by confidence calibration issues, which may lead to misdiagnosis. To address this challenge, we propose a robust quality control framework based on conformal prediction theory. This framework innovatively constructs a risk-aware dynamic threshold mechanism that adaptively adjusts segmentation decision boundaries according to clinical requirements.Specifically, we design a \textbf{calibration-aware loss function} that dynamically tunes the segmentation threshold based on a user-defined risk level $\alpha$. Utilizing exchangeable calibration data, this method ensures that the expected FNR or FDR on test data remains below $\alpha$ with high probability. The framework maintains compatibility with mainstream segmentation models (e.g., Mask R-CNN, BlendMask+ResNet-50-FPN) and datasets (PASCAL VOC format) without requiring architectural modifications. Empirical results demonstrate that we rigorously bound the FDR metric marginally over the test set via our developed calibration framework.
Related papers
- Conditional Conformal Risk Adaptation [9.559062601251464]
We develop a new score function for creating adaptive prediction sets that significantly improve conditional risk control for segmentation tasks.
We introduce a specialized probability calibration framework that enhances the reliability of pixel-wise inclusion estimates.
Our experiments on polyp segmentation demonstrate that all three methods provide valid marginal risk control and deliver more consistent conditional risk control.
arXiv Detail & Related papers (2025-04-10T10:01:06Z) - Fragility-aware Classification for Understanding Risk and Improving Generalization [6.926253982569273]
We introduce the Fragility Index (FI), a novel metric that evaluates classification performance from a risk-averse perspective.<n>We derive exact reformulations for cross-entropy loss, hinge-type loss, and Lipschitz loss, and extend the approach to deep learning models.
arXiv Detail & Related papers (2025-02-18T16:44:03Z) - Risk-Averse Certification of Bayesian Neural Networks [70.44969603471903]
We propose a Risk-Averse Certification framework for Bayesian neural networks called RAC-BNN.<n>Our method leverages sampling and optimisation to compute a sound approximation of the output set of a BNN.<n>We validate RAC-BNN on a range of regression and classification benchmarks and compare its performance with a state-of-the-art method.
arXiv Detail & Related papers (2024-11-29T14:22:51Z) - Conditional Prediction ROC Bands for Graph Classification [14.222892103838165]
Prediction ROC (CP-ROC) bands offer uncertainty quantification for ROC curves and robustness to distributional shifts in test data.
We establish statistically guaranteed coverage for CP-ROC under a local exchangeability condition.
This addresses uncertainty challenges for ROC curves under non-iid setting, ensuring reliability when test graph distributions differ from training data.
arXiv Detail & Related papers (2024-10-20T00:44:59Z) - Mesh-Informed Reduced Order Models for Aneurysm Rupture Risk Prediction [0.0]
Graph Neural Networks (GNNs) exploit the natural graph structure of the mesh obtained by the Finite Volume (FV) discretization.<n>Our experimental validation framework yields promising results, confirming our method as a valid alternative that overcomes the curse of dimensionality.
arXiv Detail & Related papers (2024-10-04T09:39:15Z) - Automatically Adaptive Conformal Risk Control [49.95190019041905]
We propose a methodology for achieving approximate conditional control of statistical risks by adapting to the difficulty of test samples.<n>Our framework goes beyond traditional conditional risk control based on user-provided conditioning events to the algorithmic, data-driven determination of appropriate function classes for conditioning.
arXiv Detail & Related papers (2024-06-25T08:29:32Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
We introduce DEviS, an easily implementable foundational model that seamlessly integrates into various medical image segmentation networks.
By leveraging subjective logic theory, we explicitly model probability and uncertainty for the problem of medical image segmentation.
DeviS incorporates an uncertainty-aware filtering module, which utilizes the metric of uncertainty-calibrated error to filter reliable data.
arXiv Detail & Related papers (2023-01-01T05:02:46Z) - BSM loss: A superior way in modeling aleatory uncertainty of
fine_grained classification [0.0]
We propose a modified Bootstrapping loss(BS loss) function with Mixup data augmentation strategy.
Our experiments indicated that BS loss with Mixup(BSM) model can halve the Expected Error(ECE) compared to standard data augmentation.
BSM model is able to perceive the semantic distance of out-of-domain data, demonstrating high potential in real-world clinical practice.
arXiv Detail & Related papers (2022-06-09T13:06:51Z) - Bayesian Uncertainty Estimation of Learned Variational MRI
Reconstruction [63.202627467245584]
We introduce a Bayesian variational framework to quantify the model-immanent (epistemic) uncertainty.
We demonstrate that our approach yields competitive results for undersampled MRI reconstruction.
arXiv Detail & Related papers (2021-02-12T18:08:14Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - Collaborative Boundary-aware Context Encoding Networks for Error Map
Prediction [65.44752447868626]
We propose collaborative boundaryaware context encoding networks called AEP-Net for error prediction task.
Specifically, we propose a collaborative feature transformation branch for better feature fusion between images and masks, and precise localization of error regions.
The AEP-Net achieves an average DSC of 0.8358, 0.8164 for error prediction task, and shows a high Pearson correlation coefficient of 0.9873.
arXiv Detail & Related papers (2020-06-25T12:42:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.