論文の概要: Entanglement Transfer in a Composite Electron-Ion-Photon System
- arxiv url: http://arxiv.org/abs/2504.05082v1
- Date: Mon, 07 Apr 2025 13:52:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 14:10:40.440684
- Title: Entanglement Transfer in a Composite Electron-Ion-Photon System
- Title(参考訳): 複合電子イオン-光子系における絡み合い伝達
- Authors: Axel Stenquist, Jakob Nicolai Bruhnke, Felipe Zapata, Jan Marcus Dahlström,
- Abstract要約: 光イオン化における絡み合いは、電子イオン対から蛍光によって電子-光子対に転移される。
時間分解されたフォン・ノイマンエントロピーは、粒子間の情報の共有方法を確立するために用いられる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We study how entanglement in photoionization is transferred from an electron-ion pair to an electron-photon pair by fluorescence. Time-resolved von Neumann entropies are used to establish how information is shared between the particles. Multipartite entanglement, between electron, ion and photon, is found on intermediate timescales. Finally, it is shown how a phase-locked two-pulse sequence allows for the application of time symmetry, mediated by strong coupling, to reveal the entanglement transfer process by measuring the photon number and electron kinetic energy in coincidence.
- Abstract(参考訳): 電子イオン対から電子-光子対への光イオン化の絡み合いについて,蛍光法により検討した。
時間分解されたフォン・ノイマンエントロピーは、粒子間の情報の共有方法を確立するために用いられる。
電子、イオン、光子の間の多粒子の絡み合いは中間時間スケールで見られる。
最後に,光子数と電子運動エネルギーを偶然に測定することにより,強結合を介する時間対称性の応用が可能となることを示す。
関連論文リスト
- Correlated relaxation and emerging entanglement in arrays of $Λ$-type atoms [83.88591755871734]
原子の絡み合いは緩和の過程で現れ、系の最終的な定常状態に持続することを示す。
本研究は, 発散による絡み合いを解消する新しい方法である。
論文 参考訳(メタデータ) (2024-11-11T08:39:32Z) - Correlated steady states and Raman lasing in continuously pumped and
probed atomic ensembles [68.8204255655161]
我々は、継続的に光学的に励起され、探査されるアルカリ原子のアンサンブルを考える。
大きな光学深度での光子の集団散乱のため、原子の定常状態は非相関なテンソル生成状態に対応しない。
超ラジアントレーザーのモデルに類似したラマンラシングの機構を発見し,特徴付けする。
論文 参考訳(メタデータ) (2022-05-10T06:54:54Z) - Single quantum emitters with spin ground states based on Cl bound
excitons in ZnSe [55.41644538483948]
InSeにおけるCl不純物に基づく電子スピン量子ビットを持つ新しいタイプの単一光子エミッタを示す。
その結果, 単一Cl不純物はフォトニック界面を有する単一光子源として好適であることが示唆された。
論文 参考訳(メタデータ) (2022-03-11T04:29:21Z) - Cavity-mediated electron-photon pairs [0.0]
量子情報、通信、センシングの促進は、量子相関の生成と制御に依存している。
フォトニックチップ型光マイクロ共振器のエバネッセント真空場と自由電子の位相整合相互作用を用いた電子-光子対状態の生成を実証する。
論文 参考訳(メタデータ) (2022-02-25T16:55:36Z) - Continuous variable quantum state tomography of photoelectrons [0.490307469564307]
極紫外光パルスの吸収による原子や分子のイオン化による電子の連続可変量子状態トモグラフィープロトコルを提案する。
我々のプロトコルは、ファノ共鳴の近傍でヘリウムとアルゴンから放出される光電子の量子状態の直接計算に対してベンチマークされる。
論文 参考訳(メタデータ) (2022-02-14T15:33:24Z) - Inelastic Mach-Zehnder Interferometry with Free Electrons [0.0]
我々は、従来の透過電子顕微鏡で構築された新しい走査型電子マッハ・ツェンダー干渉計を用いて、自由電子を用いた非弾性干渉計測を行う。
非弾性散乱電子が生成する干渉信号は、弾性散乱電子が生成する干渉信号に対して位相外であることを示す。
論文 参考訳(メタデータ) (2021-10-06T02:57:18Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
量子電磁力学は、導波路で伝播する光子と局在量子エミッタとの相互作用を扱う。
我々は、誘導光子と順序配列に焦点をあて、超放射および準放射状態、束縛光子状態、および有望な量子情報アプリケーションとの量子相関をもたらす。
論文 参考訳(メタデータ) (2021-03-11T17:49:52Z) - Auto-heterodyne characterization of narrow-band photon pairs [68.8204255655161]
ビームスプリッタで非退化光子対が干渉したときの時間相関ビート音を検出することで光子対関節スペクトルを測定する手法について述べる。
この技術は光子の対を特徴づけるのに適しており、それぞれが単一の原子種と相互作用できる。
論文 参考訳(メタデータ) (2021-01-08T18:21:30Z) - Electronic Quantum Coherence in Glycine Molecules Probed with Ultrashort
X-ray Pulses in Real Time [0.8523919911999691]
光イオン化分子の電子状態と超高速電子-ホール移動の過程の間の量子コヒーレンスを、光イオン化誘起分子分解を管理する電荷配向反応性の量子機構として推し進めている。
ここでは、光イオン化アミノ酸グリシンの量子コヒーレンスを生成および直接探究するために、X線を用いる。
遅延X線パルスは、オージェ崩壊を誘発する共鳴X線吸収と、逐次二重光イオン化による光電子放出によって誘導されたコヒーレンスを追跡する。
論文 参考訳(メタデータ) (2020-12-09T04:06:12Z) - Photon Condensation and Enhanced Magnetism in Cavity QED [68.8204255655161]
マイクロ波キャビティに結合した磁気分子系は平衡超ラジカル相転移を行う。
結合の効果は、量子イジングモデルにおける真空誘起強磁性秩序によって最初に示される。
透過実験は遷移を解くために示され、磁気の量子電気力学的制御を測定する。
論文 参考訳(メタデータ) (2020-11-07T11:18:24Z) - Two-step dynamics of photoinduced phonon entanglement generation between
remote electron-phonon systems [0.0]
光照射された遠隔電子フォノン系におけるフォノン間の量子絡み合いの発生について数値解析を行った。
フォノンの絡み合いのダイナミクスは散乱光の時間分解分光によって観察できる。
論文 参考訳(メタデータ) (2020-05-29T15:03:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。