論文の概要: Mapping biodiversity at very-high resolution in Europe
- arxiv url: http://arxiv.org/abs/2504.05231v1
- Date: Mon, 07 Apr 2025 16:15:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 14:53:05.520406
- Title: Mapping biodiversity at very-high resolution in Europe
- Title(参考訳): ヨーロッパにおける生物多様性の高解像度マッピング
- Authors: César Leblanc, Lukas Picek, Benjamin Deneu, Pierre Bonnet, Maximilien Servajean, Rémi Palard, Alexis Joly,
- Abstract要約: 本稿では,ヨーロッパを横断する高分解能生物多様性マッピングのためのカスケード型マルチモーダルパイプラインについて述べる。
提案したパイプラインは、リモートセンシング、気候時系列、種の発生データを50×50mの解像度でトレーニングしたマルチモーダルモデルであるディープSDMを用いて、種組成を予測する。
これらの予測は、生物多様性指標マップを生成し、Pl@ntBERTで生息地を分類するために使用される。
- 参考スコア(独自算出の注目度): 2.4081658738294283
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper describes a cascading multimodal pipeline for high-resolution biodiversity mapping across Europe, integrating species distribution modeling, biodiversity indicators, and habitat classification. The proposed pipeline first predicts species compositions using a deep-SDM, a multimodal model trained on remote sensing, climate time series, and species occurrence data at 50x50m resolution. These predictions are then used to generate biodiversity indicator maps and classify habitats with Pl@ntBERT, a transformer-based LLM designed for species-to-habitat mapping. With this approach, continental-scale species distribution maps, biodiversity indicator maps, and habitat maps are produced, providing fine-grained ecological insights. Unlike traditional methods, this framework enables joint modeling of interspecies dependencies, bias-aware training with heterogeneous presence-absence data, and large-scale inference from multi-source remote sensing inputs.
- Abstract(参考訳): 本稿では,ヨーロッパを横断する高分解能生物多様性マッピングのためのカスケード型マルチモーダルパイプラインについて述べる。
提案したパイプラインは、リモートセンシング、気候時系列、種の発生データを50×50mの解像度でトレーニングしたマルチモーダルモデルであるディープSDMを用いて、種組成を予測する。
これらの予測は、生物多様性インジケータマップを生成し、種間マッピング用に設計されたトランスフォーマーベースのLLMであるPl@ntBERTで生息地を分類するために使用される。
このアプローチにより、大陸規模の種分布図、生物多様性指標地図、生息地地図が作成され、きめ細かい生態学的洞察を提供する。
従来の手法とは異なり、このフレームワークは種間依存関係の連成モデリング、異種存在環境データによるバイアス対応トレーニング、マルチソースリモートセンシング入力からの大規模推論を可能にする。
関連論文リスト
- Few-shot Species Range Estimation [61.60698161072356]
特定の種が地球上でどこで発見できるかを知ることは、生態学の研究と保全に不可欠である。
我々は、限られたデータから種の範囲を正確に推定することの難しさに対処するために、数発の種範囲推定の新しいアプローチを概説する。
推測において,本モデルでは,テキストや画像などの任意のメタデータとともに,空間的位置のセットを入力として取り,フィードフォワード方式で未確認種の範囲を予測できる種を出力する。
論文 参考訳(メタデータ) (2025-02-20T19:13:29Z) - G2PDiffusion: Cross-Species Genotype-to-Phenotype Prediction via Evolutionary Diffusion [108.94237816552024]
本稿では,DNAから形態像を生成する最初の遺伝子型対フェノタイプ拡散モデル(G2PDiffusion)を提案する。
本モデルは,1)保存および共進化パターンを識別するMSA検索エンジン,2)複雑なジェノタイプ-環境相互作用を効果的にモデル化する環境対応MSA条件エンコーダ,3)遺伝子型-フェノタイプ整合性を改善する適応型表現的アライメントモジュールを含む。
論文 参考訳(メタデータ) (2025-02-07T06:16:31Z) - MiTREE: Multi-input Transformer Ecoregion Encoder for Species Distribution Modelling [2.3776390335270694]
我々は、エコリージョンエンコーダを備えたマルチインプット・ビジョン・トランスフォーマー・モデルであるMiTREEを紹介する。
夏期と冬期のサットバードデータセットを用いて,鳥種の出現率を予測することを目的として,本モデルの評価を行った。
論文 参考訳(メタデータ) (2024-12-25T22:20:47Z) - Multi-Scale and Multimodal Species Distribution Modeling [4.022195138381868]
種分布モデル (SDM) は, 発生データと環境変数の分布を予測することを目的としている。
SDMへのディープラーニングの最近の応用は、特に空間データを含む新しい道を可能にしている。
我々はSDMのモジュール構造を開発し、シングルスケールとマルチスケールの両方でスケールの効果をテストする。
GeoLifeCLEF 2023ベンチマークの結果は、マルチモーダルデータとマルチスケール表現の学習を考えると、より正確なモデルが得られることを示している。
論文 参考訳(メタデータ) (2024-11-06T15:57:20Z) - LD-SDM: Language-Driven Hierarchical Species Distribution Modeling [9.620416509546471]
我々は,世界規模の存在のみのデータを用いた種分布モデリングの問題に焦点をあてる。
種間の強い暗黙の関係を捉えるため,大きな言語モデルを用いて,種の分類学的階層を符号化した。
そこで本研究では,種分布モデルの評価が可能な近接認識評価指標を提案する。
論文 参考訳(メタデータ) (2023-12-13T18:11:37Z) - SatBird: Bird Species Distribution Modeling with Remote Sensing and
Citizen Science Data [68.2366021016172]
本稿では,市民科学データベース eBird の観測データから得られたラベルを用いた,米国内の位置情報のサテライトデータセットである SatBird について述べる。
ケニアでは低データのレシエーションを表すデータセットも提供しています。
リモートセンシングタスクのためのSOTAモデルを含む、データセットのベースラインセットをベンチマークします。
論文 参考訳(メタデータ) (2023-11-02T02:00:27Z) - Spatial Implicit Neural Representations for Global-Scale Species Mapping [72.92028508757281]
ある種が観察された場所の集合を考えると、その種がどこにいても存在しないかを予測するためのモデルを構築することが目的である。
従来の手法は、新たな大規模クラウドソースデータセットを活用するのに苦労している。
本研究では,47k種の地理的範囲を同時に推定するために,空間入射ニューラル表現(SINR)を用いる。
論文 参考訳(メタデータ) (2023-06-05T03:36:01Z) - Bird Distribution Modelling using Remote Sensing and Citizen Science
data [31.375576105932442]
気候変動は生物多様性の喪失の主要な要因である。
種の分布には大きな知識ギャップがある。
本稿では,コンピュータビジョンを利用した種分散モデルの改良手法を提案する。
論文 参考訳(メタデータ) (2023-05-01T20:27:11Z) - Semantic Change Detection with Asymmetric Siamese Networks [71.28665116793138]
2つの空中画像が与えられた場合、セマンティックチェンジ検出は、土地被覆のバリエーションを特定し、それらの変化タイプをピクセルワイド境界で識別することを目的としている。
この問題は、正確な都市計画や天然資源管理など、多くの地球ビジョンに関連するタスクにおいて不可欠である。
本研究では, 広く異なる構造を持つモジュールから得られた特徴対を用いて意味変化を同定し, 同定するための非対称システマネットワーク(ASN)を提案する。
論文 参考訳(メタデータ) (2020-10-12T13:26:30Z) - Two-View Fine-grained Classification of Plant Species [66.75915278733197]
本研究では,2視点の葉のイメージ表現に基づく新しい手法と,植物種の粒度認識のための階層的分類戦略を提案する。
シームズ畳み込みニューラルネットワークに基づく深度測定は、多数のトレーニングサンプルへの依存を減らし、新しい植物種に拡張性を持たせるために用いられる。
論文 参考訳(メタデータ) (2020-05-18T21:57:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。