論文の概要: Optimal Bayesian Affine Estimator and Active Learning for the Wiener Model
- arxiv url: http://arxiv.org/abs/2504.05490v1
- Date: Mon, 07 Apr 2025 20:36:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-09 13:28:13.439561
- Title: Optimal Bayesian Affine Estimator and Active Learning for the Wiener Model
- Title(参考訳): ウィナーモデルのための最適ベイズアフィン推定器とアクティブラーニング
- Authors: Sasan Vakili, Manuel Mazo Jr., Peyman Mohajerin Esfahani,
- Abstract要約: 我々は、未知パラメータに対する閉形式最適アフィン推定器を導出し、いわゆる「力学基底統計」を特徴とする。
我々は,推定誤差を最小限に抑えるために,入力信号を合成する能動的学習アルゴリズムを開発した。
- 参考スコア(独自算出の注目度): 3.7414278978078204
- License:
- Abstract: This paper presents a Bayesian estimation framework for Wiener models, focusing on learning nonlinear output functions under known linear state dynamics. We derive a closed-form optimal affine estimator for the unknown parameters, characterized by the so-called "dynamic basis statistics (DBS)." Several features of the proposed estimator are studied, including Bayesian unbiasedness, closed-form posterior statistics, error monotonicity in trajectory length, and consistency condition (also known as persistent excitation). In the special case of Fourier basis functions, we demonstrate that the closed-form description is computationally available, as the Fourier DBS enjoys explicit expression. Furthermore, we identify an inherent inconsistency in single-trajectory measurements, regardless of input excitation. Leveraging the closed-form estimation error, we develop an active learning algorithm synthesizing input signals to minimize estimation error. Numerical experiments validate the efficacy of our approach, showing significant improvements over traditional regularized least-squares methods.
- Abstract(参考訳): 本稿では、既知の線形状態力学下での非線形出力関数の学習に着目し、ワイナーモデルに対するベイズ推定フレームワークを提案する。
未知パラメータに対する閉形式最適アフィン推定器を導出し, いわゆる「動的基底統計量」(DBS)を特徴とする。
提案した推定器の特徴として,ベイズ的不偏性,閉形式後続統計,軌道長の誤差単調性,一貫性条件(持続励起)などが研究されている。
フーリエ基底関数の特別な場合において、フーリエDBSが明示的な表現を楽しむため、閉形式記述が計算可能であることを示す。
さらに,入力励起によらず,単軌道計測における固有の矛盾を同定する。
クローズドフォーム推定誤差を利用して,推定誤差を最小限に抑えるために,入力信号を合成する能動的学習アルゴリズムを開発した。
数値実験により本手法の有効性が検証され,従来の最小二乗法に比べて有意な改善が見られた。
関連論文リスト
- Inflationary Flows: Calibrated Bayesian Inference with Diffusion-Based Models [0.0]
本稿では,拡散モデルを用いてベイズ推定を行う方法を示す。
本稿では,新しいノイズスケジュールを用いて,標準的なDBMトレーニングを通じてそのようなマップを学習する方法を示す。
その結果は、低次元の潜在空間上で一意に定義される非常に表現性の高い生成モデルのクラスである。
論文 参考訳(メタデータ) (2024-07-11T19:58:19Z) - Learning Unnormalized Statistical Models via Compositional Optimization [73.30514599338407]
実データと人工雑音のロジスティックな損失として目的を定式化することにより, ノイズコントラスト推定(NCE)を提案する。
本稿では,非正規化モデルの負の対数類似度を最適化するための直接的アプローチについて検討する。
論文 参考訳(メタデータ) (2023-06-13T01:18:16Z) - Non-Parametric Learning of Stochastic Differential Equations with Non-asymptotic Fast Rates of Convergence [65.63201894457404]
非線形微分方程式のドリフトと拡散係数の同定のための新しい非パラメトリック学習パラダイムを提案する。
鍵となる考え方は、基本的には、対応するフォッカー・プランク方程式のRKHSに基づく近似をそのような観測に適合させることである。
論文 参考訳(メタデータ) (2023-05-24T20:43:47Z) - Variational Nonlinear Kalman Filtering with Unknown Process Noise
Covariance [24.23243651301339]
本稿では,近似ベイズ推定原理に基づく非線形状態推定とモデルパラメータの同定手法を提案する。
シミュレーションおよび実世界のデータを用いて,レーダ目標追尾法の性能を検証した。
論文 参考訳(メタデータ) (2023-05-06T03:34:39Z) - Convergence of uncertainty estimates in Ensemble and Bayesian sparse
model discovery [4.446017969073817]
ブートストラップに基づく逐次しきい値最小二乗推定器による雑音に対する精度と頑健性の観点から経験的成功を示す。
このブートストラップに基づくアンサンブル手法は,誤差率の指数収束率で,確率的に正しい可変選択を行うことができることを示す。
論文 参考訳(メタデータ) (2023-01-30T04:07:59Z) - Data-Driven Influence Functions for Optimization-Based Causal Inference [105.5385525290466]
統計的汎関数に対するガトー微分を有限差分法で近似する構成的アルゴリズムについて検討する。
本研究では,確率分布を事前知識がないが,データから推定する必要がある場合について検討する。
論文 参考訳(メタデータ) (2022-08-29T16:16:22Z) - Experimental Design for Linear Functionals in Reproducing Kernel Hilbert
Spaces [102.08678737900541]
線形汎関数に対するバイアス認識設計のためのアルゴリズムを提供する。
準ガウス雑音下での固定および適応設計に対する漸近的でない信頼集合を導出する。
論文 参考訳(メタデータ) (2022-05-26T20:56:25Z) - BayesFlow can reliably detect Model Misspecification and Posterior
Errors in Amortized Bayesian Inference [0.0]
シミュレーションに基づく推論で生じるモデル誤特定のタイプを概念化し、これらの誤特定の下でベイズフローフレームワークの性能を体系的に検討する。
本稿では、潜在データ空間に確率的構造を課し、最大平均不一致(MMD)を利用して破滅的な誤特定を検知する拡張最適化手法を提案する。
論文 参考訳(メタデータ) (2021-12-16T13:25:27Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z) - Bayesian differential programming for robust systems identification
under uncertainty [14.169588600819546]
本稿では,非線形力学系のノイズ,スパース,不規則な観測からベイズ系を同定する機械学習フレームワークを提案する。
提案手法は、微分可能プログラミングの最近の発展を利用して、通常の微分方程式解法を用いて勾配情報を伝播する。
スパーシティプロモーティングプリエントを用いることで、下層の潜在力学に対する解釈可能かつ同義的な表現の発見が可能になる。
論文 参考訳(メタデータ) (2020-04-15T00:51:14Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
本稿では,2次フーリエ特徴に基づく導関数によるGP回帰のスケーリング手法を提案する。
我々は、近似されたカーネルと近似された後部の両方に適用される決定論的、非漸近的、指数関数的に高速な崩壊誤差境界を証明した。
論文 参考訳(メタデータ) (2020-03-05T14:33:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。