論文の概要: Graph Neural Network-Based Distributed Optimal Control for Linear Networked Systems: An Online Distributed Training Approach
- arxiv url: http://arxiv.org/abs/2504.06439v1
- Date: Tue, 08 Apr 2025 21:18:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-10 13:05:24.606911
- Title: Graph Neural Network-Based Distributed Optimal Control for Linear Networked Systems: An Online Distributed Training Approach
- Title(参考訳): 線形ネットワークシステムのためのグラフニューラルネットワークに基づく分散最適制御:オンライン分散学習手法
- Authors: Zihao Song, Panos J. Antsaklis, Hai Lin,
- Abstract要約: グラフリカレントニューラルネットワーク(GRNN)を用いた分散最適制御器の学習に関心がある。
まず,GRNNに基づく分散最適制御法を提案し,その問題を自己教師付き学習問題とみなした。
次に、分散オンライントレーニングを分散勾配にインスパイアされた分散計算により達成し、分散オンライントレーニングを設計する。
- 参考スコア(独自算出の注目度): 3.1674691898837737
- License:
- Abstract: In this paper, we consider the distributed optimal control problem for linear networked systems. In particular, we are interested in learning distributed optimal controllers using graph recurrent neural networks (GRNNs). Most of the existing approaches result in centralized optimal controllers with offline training processes. However, as the increasing demand of network resilience, the optimal controllers are further expected to be distributed, and are desirable to be trained in an online distributed fashion, which are also the main contributions of our work. To solve this problem, we first propose a GRNN-based distributed optimal control method, and we cast the problem as a self-supervised learning problem. Then, the distributed online training is achieved via distributed gradient computation, and inspired by the (consensus-based) distributed optimization idea, a distributed online training optimizer is designed. Furthermore, the local closed-loop stability of the linear networked system under our proposed GRNN-based controller is provided by assuming that the nonlinear activation function of the GRNN-based controller is both local sector-bounded and slope-restricted. The effectiveness of our proposed method is illustrated by numerical simulations using a specifically developed simulator.
- Abstract(参考訳): 本稿では,線形ネットワークシステムにおける分散最適制御問題について考察する。
特に,グラフリカレントニューラルネットワーク(GRNN)を用いた分散最適制御器の学習に関心がある。
既存のアプローチのほとんどは、オフラインのトレーニングプロセスを備えた集中型最適コントローラをもたらす。
しかし、ネットワークレジリエンスの需要が高まるにつれて、最適なコントローラはさらに分散されることが期待され、オンライン分散方式でトレーニングすることが望ましい。
そこで我々はまず,GRNNに基づく分散最適制御法を提案し,その問題を自己教師付き学習問題とみなした。
次に、分散オンライントレーニングを分散勾配計算により達成し、(合意に基づく)分散最適化のアイデアに触発されて、分散オンライントレーニングオプティマイザを設計する。
さらに,提案したGRNN制御系における線形ネットワーク系の局所閉ループ安定性は,GRNN制御系の非線形活性化関数が局所セクター有界かつ傾斜制限付きであることを仮定して提供する。
提案手法の有効性を,特別に開発したシミュレータを用いて数値シミュレーションにより示す。
関連論文リスト
- A Guaranteed-Stable Neural Network Approach for Optimal Control of Nonlinear Systems [3.5000297213981653]
非線形システムの最適制御に対する有望なアプローチは、システムを反復線形化し、最適制御入力を決定するために各タイミングで最適化問題を解くことである。
このアプローチはオンライン最適化に依存するため、計算コストがかかるため、限られた計算資源を持つシステムでは非現実的である。
この問題の潜在的な解決策の1つは、ニューラルネットワーク(NN)を制御ループに組み込むことである。
論文 参考訳(メタデータ) (2025-01-28T22:55:47Z) - Adaptive Genetic Selection based Pinning Control with Asymmetric Coupling for Multi-Network Heterogeneous Vehicular Systems [8.454856509502733]
本稿では,異種マルチネットワーク車載アドホックネットワーク(VANET)のためのピンニング制御手法を提案する。
まず、単一および複数ネットワーク条件下でのピンニング制御戦略の安定性を証明し、厳密な理論基盤を確立する。
本理論に基づいて,最適ピンニングノードの選択に適した適応型遺伝的アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-11-05T11:49:26Z) - Online Network Source Optimization with Graph-Kernel MAB [62.6067511147939]
大規模ネットワークにおける最適なソース配置をオンラインで学習するためのグラフカーネルマルチアームバンディットアルゴリズムであるGrab-UCBを提案する。
適応グラフ辞書モデルを用いて,ネットワークプロセスを記述する。
我々は、ネットワークパラメータに依存する性能保証を導出し、シーケンシャルな意思決定戦略の学習曲線にさらに影響を及ぼす。
論文 参考訳(メタデータ) (2023-07-07T15:03:42Z) - Unsupervised Optimal Power Flow Using Graph Neural Networks [172.33624307594158]
グラフニューラルネットワークを用いて、要求された電力と対応するアロケーションとの間の非線形パラメトリゼーションを学習する。
シミュレーションを通して、この教師なし学習コンテキストにおけるGNNの使用は、標準解法に匹敵するソリューションにつながることを示す。
論文 参考訳(メタデータ) (2022-10-17T17:30:09Z) - Nonlinear Control Allocation: A Learning Based Approach [0.0]
現代の航空機は、耐故障性と操縦性要件を満たすために冗長な制御エフェクターで設計されている。
これにより航空機は過度に作動し、制御エフェクタ間で制御コマンドを分配するために制御割り当てスキームが必要となる。
伝統的に最適化に基づく制御割当スキームが用いられるが、非線型割当問題では、これらの手法は大きな計算資源を必要とする。
本研究では,ニューラルネットワーク(ANN)に基づく非線形制御割り当て方式を提案する。
論文 参考訳(メタデータ) (2022-01-17T02:30:25Z) - Learning Autonomy in Management of Wireless Random Networks [102.02142856863563]
本稿では,任意の数のランダム接続ノードを持つ無線ネットワークにおいて,分散最適化タスクに取り組む機械学習戦略を提案する。
我々は,ネットワークトポロジとは無関係に,前方および後方に計算を行う分散メッセージパスニューラルネットワーク(DMPNN)と呼ばれる,柔軟な深層ニューラルネットワーク形式を開発した。
論文 参考訳(メタデータ) (2021-06-15T09:03:28Z) - A Heuristically Assisted Deep Reinforcement Learning Approach for
Network Slice Placement [0.7885276250519428]
本稿では,Deep Reinforcement Learning(DRL)に基づくハイブリッド配置ソリューションと,Power of Two Choices原則に基づく専用最適化を提案する。
提案したHuristically-Assisted DRL (HA-DRL) は,他の最先端手法と比較して学習プロセスの高速化と資源利用の促進を可能にする。
論文 参考訳(メタデータ) (2021-05-14T10:04:17Z) - Decentralized Control with Graph Neural Networks [147.84766857793247]
分散コントローラを学習するグラフニューラルネットワーク(GNN)を用いた新しいフレームワークを提案する。
GNNは、自然分散アーキテクチャであり、優れたスケーラビリティと転送性を示すため、タスクに適している。
分散コントローラの学習におけるGNNの可能性を説明するために、群れとマルチエージェントパス計画の問題を検討する。
論文 参考訳(メタデータ) (2020-12-29T18:59:14Z) - Adaptive Serverless Learning [114.36410688552579]
本研究では,データから学習率を動的に計算できる適応型分散学習手法を提案する。
提案アルゴリズムは, 作業者数に対して線形高速化が可能であることを示す。
通信効率のオーバーヘッドを低減するため,通信効率のよい分散訓練手法を提案する。
論文 参考訳(メタデータ) (2020-08-24T13:23:02Z) - Resource Allocation via Graph Neural Networks in Free Space Optical
Fronthaul Networks [119.81868223344173]
本稿では,自由空間光(FSO)フロントホールネットワークにおける最適資源割り当てについて検討する。
我々は、FSOネットワーク構造を利用するために、ポリシーパラメータ化のためのグラフニューラルネットワーク(GNN)を検討する。
本アルゴリズムは,システムモデルに関する知識が不要なモデルフリーでGNNを訓練するために開発された。
論文 参考訳(メタデータ) (2020-06-26T14:20:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。