論文の概要: From Public Data to Private Information: The Case of the Supermarket
- arxiv url: http://arxiv.org/abs/2504.07121v1
- Date: Wed, 26 Mar 2025 18:22:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-13 06:23:27.609706
- Title: From Public Data to Private Information: The Case of the Supermarket
- Title(参考訳): 公開データから私的情報へ:スーパーマーケットを事例として
- Authors: Vincent C. Müller,
- Abstract要約: 計算データ処理は現在のプロセスの多くに必要であり、プライバシー侵害ではない、と私は主張する。
問題とソリューションのスケッチはケーススタディ(スーパーマーケットの顧客カード)で説明されている。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The background to this paper is that in our world of massively increasing personal digital data any control over the data about me seems illusionary - informational privacy seems a lost cause. On the other hand, the production of this digital data seems a necessary component of our present life in the industrialized world. A framework for a resolution of this apparent dilemma is provided if by the distinction between (meaningless) data and (meaningful) information. I argue that computational data processing is necessary for many present-day processes and not a breach of privacy, while collection and processing of private information is often not necessary and a breach of privacy. The problem and the sketch of its solution are illustrated in a case-study: supermarket customer cards.
- Abstract(参考訳): この論文の背景には、個人データを大幅に増加させている私たちの世界では、私のデータに対するいかなる制御も幻想的のように思える。
一方、このデジタルデータの作成は、産業化社会における現在の生活に欠かせない要素であると考えられる。
この明らかなジレンマの解決のためのフレームワークは、(意味のない)データと(意味のない)情報の区別によって提供される。
計算データ処理は、現在の多くのプロセスにおいて必要であり、プライバシー侵害ではない、と私は主張する。
問題とソリューションのスケッチはケーススタディ(スーパーマーケットの顧客カード)で説明されている。
関連論文リスト
- A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
プライバシー上の懸念のあるデータには、データアクセスとデータ共有を頻繁に禁止する厳格な規制が伴う。
これらの障害を克服することは、プライバシーに敏感なデータを含む多くの現実世界のアプリケーションシナリオにおいて、技術的進歩の鍵となる。
差分的プライベート(DP)データパブリッシングは、データの衛生化された形式のみを公開する、魅力的なソリューションを提供する。
論文 参考訳(メタデータ) (2023-09-27T14:38:16Z) - Visualising Personal Data Flows: Insights from a Case Study of Booking.com [8.485751288361616]
本稿では、プライバシポリシから抽出した個人データフローを可視化するケーススタディとして、Booking.comを取り上げている。
消費者の個人情報の共有方法を示すことによって、私たちは質問を提起し、プライバシポリシを使用してオンラインユーザに対して、個人データフローの真の規模と状況について通知する際の課題と制限に関する議論を拡大します。
論文 参考訳(メタデータ) (2023-04-19T12:17:46Z) - More Data Types More Problems: A Temporal Analysis of Complexity,
Stability, and Sensitivity in Privacy Policies [0.0]
データブローカーとデータプロセッサは、消費者データを収集し、購入し、販売することで利益を得る、数十億ドル規模の産業の一部である。
しかし、データ収集業界には、どのような種類のデータが収集、使用、販売されているかを理解するのが難しくなる透明性がほとんどありません。
論文 参考訳(メタデータ) (2023-02-17T15:21:24Z) - Position: Considerations for Differentially Private Learning with Large-Scale Public Pretraining [75.25943383604266]
大規模なWebスクレイプデータセットの使用は、差分プライバシ保存と見なすべきかどうかを疑問視する。
Webデータ上で事前訓練されたこれらのモデルを“プライベート”として公開することで、市民のプライバシーに対する信頼を意味のあるプライバシの定義として損なう可能性があることを警告します。
公的な事前学習がより普及し、強力になるにつれて、私的な学習分野への道のりを議論することで、我々は結論づける。
論文 参考訳(メタデータ) (2022-12-13T10:41:12Z) - Privacy Explanations - A Means to End-User Trust [64.7066037969487]
この問題に対処するために、説明可能性がどのように役立つかを検討しました。
私たちはプライバシーの説明を作成し、エンドユーザの理由と特定のデータが必要な理由を明らかにするのに役立ちました。
我々の発見は、プライバシーの説明がソフトウェアシステムの信頼性を高めるための重要なステップであることを示している。
論文 参考訳(メタデータ) (2022-10-18T09:30:37Z) - Certified Data Removal in Sum-Product Networks [78.27542864367821]
収集したデータの削除は、データのプライバシを保証するのに不十分であることが多い。
UnlearnSPNは、訓練された総生産ネットワークから単一データポイントの影響を取り除くアルゴリズムである。
論文 参考訳(メタデータ) (2022-10-04T08:22:37Z) - Equity and Privacy: More Than Just a Tradeoff [10.545898004301323]
近年の研究では、プライバシ保護データ公開が、異なる集団グループ間で異なるレベルのユーティリティを導入できることが示されている。
限界人口は、プライバシー技術から不公平に実用性を減らすのだろうか?
不等式があれば、どのように対処すればよいのか?
論文 参考訳(メタデータ) (2021-11-08T17:39:32Z) - Security and Privacy Preserving Deep Learning [2.322461721824713]
ディープラーニングに必要な膨大なデータ収集は、明らかにプライバシーの問題を提示している。
写真や音声録音などの、個人的かつ高感度なデータは、収集する企業によって無期限に保持される。
深層ニューラルネットワークは、トレーニングデータに関する情報を記憶するさまざまな推論攻撃の影響を受けやすい。
論文 参考訳(メタデータ) (2020-06-23T01:53:46Z) - A vision for global privacy bridges: Technical and legal measures for
international data markets [77.34726150561087]
データ保護法とプライバシーの権利が認められているにもかかわらず、個人情報の取引は「トレーディング・オイル」と同等のビジネスになっている。
オープンな対立は、データに対するビジネスの要求とプライバシーへの欲求の間に生じている。
プライバシを備えたパーソナル情報市場のビジョンを提案し,テストする。
論文 参考訳(メタデータ) (2020-05-13T13:55:50Z) - Utility-aware Privacy-preserving Data Releasing [7.462336024223669]
本稿では2段階の摂動に基づくプライバシー保護データ公開フレームワークを提案する。
まず、特定の事前定義されたプライバシとユーティリティの問題がパブリックドメインデータから学習される。
そして、学習した知識を活用して、データ所有者のデータを民営化したデータに正確に摂動させます。
論文 参考訳(メタデータ) (2020-05-09T05:32:46Z) - Beyond privacy regulations: an ethical approach to data usage in
transportation [64.86110095869176]
本稿では,フェデレート機械学習を交通分野に適用する方法について述べる。
フェデレートラーニングは、ユーザのプライバシを尊重しつつ、プライバシに敏感なデータを処理可能にする方法だと考えています。
論文 参考訳(メタデータ) (2020-04-01T15:10:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。