論文の概要: DLTPose: 6DoF Pose Estimation From Accurate Dense Surface Point Estimates
- arxiv url: http://arxiv.org/abs/2504.07335v1
- Date: Wed, 09 Apr 2025 23:30:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-11 12:20:59.300078
- Title: DLTPose: 6DoF Pose Estimation From Accurate Dense Surface Point Estimates
- Title(参考訳): DLTPose:高精度表面点推定による6DoFのポース推定
- Authors: Akash Jadhav, Michael Greenspan,
- Abstract要約: DoseはRGB-D画像から6DoFオブジェクトのポーズ推定を行う新しい手法である。
スパースキーポイント法の精度と高密度画素ワイド予測の堅牢性を組み合わせる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We propose DLTPose, a novel method for 6DoF object pose estimation from RGB-D images that combines the accuracy of sparse keypoint methods with the robustness of dense pixel-wise predictions. DLTPose predicts per-pixel radial distances to a set of minimally four keypoints, which are then fed into our novel Direct Linear Transform (DLT) formulation to produce accurate 3D object frame surface estimates, leading to better 6DoF pose estimation. Additionally, we introduce a novel symmetry-aware keypoint ordering approach, designed to handle object symmetries that otherwise cause inconsistencies in keypoint assignments. Previous keypoint-based methods relied on fixed keypoint orderings, which failed to account for the multiple valid configurations exhibited by symmetric objects, which our ordering approach exploits to enhance the model's ability to learn stable keypoint representations. Extensive experiments on the benchmark LINEMOD, Occlusion LINEMOD and YCB-Video datasets show that DLTPose outperforms existing methods, especially for symmetric and occluded objects, demonstrating superior Mean Average Recall values of 86.5% (LM), 79.7% (LM-O) and 89.5% (YCB-V). The code is available at https://anonymous.4open.science/r/DLTPose_/ .
- Abstract(参考訳): 本稿では,RGB-D画像から6DoFオブジェクトのポーズ推定を行うDLTPoseを提案する。
DLTPoseは、画素ごとの半径距離を最小4個のキーポイントに予測し、新しい直線形変換(Direct Linear Transform, DLT)の定式化に投入し、正確な3Dオブジェクトフレーム表面推定を行い、6DoFのポーズ推定を向上する。
さらに、キーポイント割り当ての不整合を生じるオブジェクト対称性を扱うために設計された新しい対称性対応キーポイント順序付け手法を導入する。
従来のキーポイントベースの手法は固定キーポイント順序付けに依存していたが、対称オブジェクトが示す複数の有効な構成を考慮できなかった。
ベンチマークLINEMOD、Occlusion LINEMOD、およびYCB-Videoデータセットの大規模な実験により、DLTPoseは既存の手法、特に対称および隠蔽対象において、86.5%(LM)、79.7%(LM-O)、89.5%(YCB-V)の優れた平均平均リコール値を示す。
コードはhttps://anonymous.4open.science/r/DLTPose_/で公開されている。
関連論文リスト
- BOP-Distrib: Revisiting 6D Pose Estimation Benchmark for Better Evaluation under Visual Ambiguities [0.7499722271664147]
6次元ポーズ推定は、カメラの観察を最もよく説明する対象のポーズを決定することを目的としている。
現在、6次元ポーズ推定法は、その基礎となる真理アノテーションに対して、視覚的曖昧性は、グローバルなオブジェクト対称性にのみ関連していると考えるデータセット上でベンチマークされている。
本稿では,画像内の物体表面の視認性を考慮し,各画像に特有の6次元ポーズ分布を付加したデータセットのアノテート手法を提案する。
論文 参考訳(メタデータ) (2024-08-30T13:52:26Z) - RDPN6D: Residual-based Dense Point-wise Network for 6Dof Object Pose Estimation Based on RGB-D Images [13.051302134031808]
単一のRGB-D画像を用いてオブジェクトの6DoFポーズを計算する新しい手法を提案する。
オブジェクトのポーズを直接予測する既存の手法や、ポーズ回復のためのスパースキーポイントに依存する既存の手法とは異なり、我々のアプローチは密度の高い対応を使ってこの課題に対処する。
論文 参考訳(メタデータ) (2024-05-14T10:10:45Z) - 6DOF Pose Estimation of a 3D Rigid Object based on Edge-enhanced Point
Pair Features [20.33119373900788]
本稿では,点対特徴量(PPF)に基づく効率的な6次元ポーズ推定手法を提案する。
エッジマッチング度を計算することにより、対称曖昧性を解決するために、ポーズ仮説の検証手法を提案する。
論文 参考訳(メタデータ) (2022-09-17T07:05:50Z) - Coupled Iterative Refinement for 6D Multi-Object Pose Estimation [64.7198752089041]
既知の3DオブジェクトのセットとRGBまたはRGB-Dの入力画像から、各オブジェクトの6Dポーズを検出して推定する。
我々のアプローチは、ポーズと対応を緊密に結合した方法で反復的に洗練し、アウトレーヤを動的に除去して精度を向上させる。
論文 参考訳(メタデータ) (2022-04-26T18:00:08Z) - Semantic keypoint-based pose estimation from single RGB frames [64.80395521735463]
一つのRGB画像からオブジェクトの連続6-DoFポーズを推定する手法を提案する。
このアプローチは、畳み込みネットワーク(convnet)によって予測されるセマンティックキーポイントと、変形可能な形状モデルを組み合わせる。
提案手法は,インスタンスベースのシナリオとクラスベースのシナリオの両方に対して,6-DoFオブジェクトのポーズを正確に復元できることを示す。
論文 参考訳(メタデータ) (2022-04-12T15:03:51Z) - ZebraPose: Coarse to Fine Surface Encoding for 6DoF Object Pose
Estimation [76.31125154523056]
物体表面を高密度に表現できる離散ディスクリプタを提案する。
また,微粒化対応予測が可能な微粒化学習戦略を提案する。
論文 参考訳(メタデータ) (2022-03-17T16:16:24Z) - Rethinking Keypoint Representations: Modeling Keypoints and Poses as
Objects for Multi-Person Human Pose Estimation [79.78017059539526]
本研究では,個々のキーポイントと空間的関連キーポイント(ポーズ)の集合を,密集した単一ステージアンカーベース検出フレームワーク内のオブジェクトとしてモデル化する,新しいヒートマップフリーなキーポイント推定手法を提案する。
実験では, KAPAOは従来手法よりもはるかに高速かつ高精度であり, 熱マップ後処理に悩まされていた。
我々の大規模モデルであるKAPAO-Lは、テスト時間拡張なしでMicrosoft COCO Keypoints検証セット上で70.6のAPを達成する。
論文 参考訳(メタデータ) (2021-11-16T15:36:44Z) - FS-Net: Fast Shape-based Network for Category-Level 6D Object Pose
Estimation with Decoupled Rotation Mechanism [49.89268018642999]
6次元ポーズ推定のための効率的なカテゴリレベルの特徴抽出が可能な高速形状ベースネットワーク(FS-Net)を提案する。
提案手法は,カテゴリレベルおよびインスタンスレベルの6Dオブジェクトのポーズ推定における最先端性能を実現する。
論文 参考訳(メタデータ) (2021-03-12T03:07:24Z) - PrimA6D: Rotational Primitive Reconstruction for Enhanced and Robust 6D
Pose Estimation [11.873744190924599]
本稿では,1つの画像を入力として,回転プリミティブに基づく6次元オブジェクトポーズ推定を提案する。
変分オートエンコーダ(VAE)を利用して、基礎となるプリミティブとその関連するキーポイントを学習する。
公開データセットに対して評価すると,LINEMOD,Occlusion LINEMOD,およびY誘発データセットよりも顕著な改善が得られた。
論文 参考訳(メタデータ) (2020-06-14T03:55:42Z) - Robust 6D Object Pose Estimation by Learning RGB-D Features [59.580366107770764]
本稿では、この局所最適問題を解くために、回転回帰のための離散連続的な新しい定式化を提案する。
我々はSO(3)の回転アンカーを均一にサンプリングし、各アンカーから目標への制約付き偏差を予測し、最適な予測を選択するための不確実性スコアを出力する。
LINEMOD と YCB-Video の2つのベンチマーク実験により,提案手法が最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2020-02-29T06:24:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。