論文の概要: Benchmarking Multi-Organ Segmentation Tools for Multi-Parametric T1-weighted Abdominal MRI
- arxiv url: http://arxiv.org/abs/2504.07729v1
- Date: Thu, 10 Apr 2025 13:27:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-11 12:23:00.616631
- Title: Benchmarking Multi-Organ Segmentation Tools for Multi-Parametric T1-weighted Abdominal MRI
- Title(参考訳): マルチパラメトリックT1強調腹部MRIにおけるマルチオーガンセグメンテーションツールのベンチマーク
- Authors: Nicole Tran, Anisa Prasad, Yan Zhuang, Tejas Sudharshan Mathai, Boah Kim, Sydney Lewis, Pritam Mukherjee, Jianfei Liu, Ronald M. Summers,
- Abstract要約: MRIにおける多臓器分割のための3つのツールが提案されている。
特定のMRIシークエンスタイプにおけるこれらのツールの性能は、まだ定量化されていない。
MRSegはDiceスコア80.7$pm$ 18.6、Hausdorff Distance(HD)エラー8.9$pm$ 10.4 mmを得た。
- 参考スコア(独自算出の注目度): 11.34844014813511
- License:
- Abstract: The segmentation of multiple organs in multi-parametric MRI studies is critical for many applications in radiology, such as correlating imaging biomarkers with disease status (e.g., cirrhosis, diabetes). Recently, three publicly available tools, such as MRSegmentator (MRSeg), TotalSegmentator MRI (TS), and TotalVibeSegmentator (VIBE), have been proposed for multi-organ segmentation in MRI. However, the performance of these tools on specific MRI sequence types has not yet been quantified. In this work, a subset of 40 volumes from the public Duke Liver Dataset was curated. The curated dataset contained 10 volumes each from the pre-contrast fat saturated T1, arterial T1w, venous T1w, and delayed T1w phases, respectively. Ten abdominal structures were manually annotated in these volumes. Next, the performance of the three public tools was benchmarked on this curated dataset. The results indicated that MRSeg obtained a Dice score of 80.7 $\pm$ 18.6 and Hausdorff Distance (HD) error of 8.9 $\pm$ 10.4 mm. It fared the best ($p < .05$) across the different sequence types in contrast to TS and VIBE.
- Abstract(参考訳): マルチパラメトリックMRI研究における複数の臓器のセグメンテーションは、画像バイオマーカーと疾患状態(例えば、肝硬変、糖尿病)との関連など、放射線学における多くの応用において重要である。
近年,MRSegmentator (MRSeg), TotalSegmentator MRI (TS), TotalVibeSegmentator (VIBE) の3つのツールがMRIにおける多臓器セグメンテーションのために提案されている。
しかし、これらのツールの特定のMRIシークエンスタイプに対する性能は、まだ定量化されていない。
この作品では、公のDuke Liver Datasetから40巻のサブセットがキュレーションされた。
キュレートしたデータセットは, コントラスト前脂肪飽和T1, 動脈内T1w, 静脈内T1w, 遅延T1wの各相からそれぞれ10巻を抽出した。
この巻に10の腹部構造を手動で注記した。
次に、3つの公開ツールのパフォーマンスを、このキュレートされたデータセットでベンチマークした。
その結果、MSRegはDiceスコア80.7$\pm$ 18.6、Hausdorff Distance(HD)エラー8.9$\pm$ 10.4 mmを得た。
TSやVIBEとは対照的に、様々なシーケンスタイプでベスト(p < .05$)を稼いだ。
関連論文リスト
- SMILE-UHURA Challenge -- Small Vessel Segmentation at Mesoscopic Scale from Ultra-High Resolution 7T Magnetic Resonance Angiograms [60.35639972035727]
公開されている注釈付きデータセットの欠如は、堅牢で機械学習駆動のセグメンテーションアルゴリズムの開発を妨げている。
SMILE-UHURAチャレンジは、7T MRIで取得したTime-of-Flightアンジオグラフィーの注釈付きデータセットを提供することで、公開されている注釈付きデータセットのギャップに対処する。
Diceスコアは、それぞれのデータセットで0.838 $pm$0.066と0.716 $pm$ 0.125まで到達し、平均パフォーマンスは0.804 $pm$ 0.15までになった。
論文 参考訳(メタデータ) (2024-11-14T17:06:00Z) - SPOCKMIP: Segmentation of Vessels in MRAs with Enhanced Continuity using Maximum Intensity Projection as Loss [0.5224038339798621]
本研究は,MIP(Maximum Intensity Projection)を付加的な損失基準として用いたセグメンテーション品質の向上に焦点をあてる。
ラベルセグメンテーションのMIPを1つの(z軸)と3次元体積の複数の知覚可能な軸に組み込むことで2つの手法を提案する。
提案手法は血管の連続性を改善したセグメンテーションを生成し,ROIの視覚的検査で明らかである。
論文 参考訳(メタデータ) (2024-07-11T16:39:24Z) - TotalSegmentator MRI: Robust Sequence-independent Segmentation of Multiple Anatomic Structures in MRI [59.86827659781022]
nnU-Netモデル(TotalSegmentator)をMRIおよび80原子構造で訓練した。
予測されたセグメンテーションと専門家基準セグメンテーションとの間には,ディススコアが算出され,モデル性能が評価された。
オープンソースで使いやすいモデルは、80構造の自動的で堅牢なセグメンテーションを可能にする。
論文 参考訳(メタデータ) (2024-05-29T20:15:54Z) - Large-Scale Multi-Center CT and MRI Segmentation of Pancreas with Deep Learning [20.043497517241992]
膵疾患の診断と経過観察には膵の容積分画の自動化が必要である。
そこで我々は,nnUNetとTransformerネットワークの長所と,ボリューム計算が可能な新しい線形アテンションモジュールを組み合わせたPanSegNetを開発した。
T1W MRIは85.0% (std: 7.9%) , T2W MRIは86.3% (std: 6.4%) であった。
論文 参考訳(メタデータ) (2024-05-20T20:37:27Z) - MRISegmentator-Abdomen: A Fully Automated Multi-Organ and Structure Segmentation Tool for T1-weighted Abdominal MRI [12.236789438183138]
複数の臓器や構造のボクセルレベルのアノテーションを備えた腹部MRIデータセットは公開されていない。
MRISegmentator-Abdomen(略してMRISegmentator)と呼ばれる3D nnUNetモデルをこのデータセットでトレーニングした。
このツールは、T1強調腹部MRIの62の臓器と構造の、自動的、正確で、堅牢なセグメンテーションを提供する。
論文 参考訳(メタデータ) (2024-05-09T17:33:09Z) - Minimally Interactive Segmentation of Soft-Tissue Tumors on CT and MRI
using Deep Learning [0.0]
我々は,CTおよびMRIを用いたソフト・タウト・腫瘍(STT)のための,最小限の対話型深層学習に基づくセグメンテーション法を開発した。
この方法は、畳み込みニューラルネットワークの入力として、腫瘍の極端な境界付近で6つの点をクリックする必要がある。
論文 参考訳(メタデータ) (2024-02-12T16:15:28Z) - MA-SAM: Modality-agnostic SAM Adaptation for 3D Medical Image
Segmentation [58.53672866662472]
我々はMA-SAMと命名されたモダリティに依存しないSAM適応フレームワークを提案する。
本手法は,重量増加のごく一部だけを更新するためのパラメータ効率の高い微調整戦略に根ざしている。
画像エンコーダのトランスバータブロックに一連の3Dアダプタを注入することにより,事前学習した2Dバックボーンが入力データから3次元情報を抽出することができる。
論文 参考訳(メタデータ) (2023-09-16T02:41:53Z) - Learned Local Attention Maps for Synthesising Vessel Segmentations [43.314353195417326]
我々は、T2 MRIのみから、Willis(CoW)円の主大脳動脈の分節を合成するためのエンコーダ・デコーダモデルを提案する。
これは、セグメンテーションラベルを拡張することによって生成された学習されたローカルアテンションマップを使用し、ネットワークはCoWの合成に関連するT2 MRIからのみ情報を抽出する。
論文 参考訳(メタデータ) (2023-08-24T15:32:27Z) - Moving from 2D to 3D: volumetric medical image classification for rectal
cancer staging [62.346649719614]
術前T2期とT3期を区別することは直腸癌治療における最も困難かつ臨床的に重要な課題である。
直腸MRIでT3期直腸癌からT2を正確に判別するための体積畳み込みニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2022-09-13T07:10:14Z) - Weakly-supervised Biomechanically-constrained CT/MRI Registration of the
Spine [72.85011943179894]
本稿では,各脊椎の剛性と容積を保存し,登録精度を最大化しながら,弱教師付き深層学習フレームワークを提案する。
また,CTにおける椎体自動分節化はMRIと対比してより正確な結果をもたらすため,CTラベルマップのみに依存するよう,これらの損失を特に設計する。
以上の結果から, 解剖学的認識による損失の増大は, 精度を維持しつつも, 推測変換の妥当性を高めることが示唆された。
論文 参考訳(メタデータ) (2022-05-16T10:59:55Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
本研究の目的は,LGE-MRIを用いた心筋境界領域の深部学習モデルに基づく正確な自動セグメンテーション法を開発することである。
合計320回の試験(平均6回の試験)と28回の試験が行われた。
ベーススライスとミドルスライスにおけるアンサンブルモデルの性能解析は, サーバ内調査と同等であり, アトピーススライスではわずかに低かった。
論文 参考訳(メタデータ) (2020-05-27T20:44:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。