論文の概要: Cellular Development Follows the Path of Minimum Action
- arxiv url: http://arxiv.org/abs/2504.08096v1
- Date: Thu, 10 Apr 2025 19:44:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-14 14:17:54.998536
- Title: Cellular Development Follows the Path of Minimum Action
- Title(参考訳): 細胞発達は最小作用の経路を辿る
- Authors: Rohola Zandie, Farhan Khodaee, Yufan Xia, Elazer R. Edelman,
- Abstract要約: 細胞発達は, 自然界の力学系を支配する基礎的物理法則と整合して, 最小作用の経路に従うことが示唆された。
本稿では,最小アクションの原理と最大エントロピーの深い関係を利用して,トランスフォーマーアーキテクチャを用いた発達過程をモデル化する計算フレームワークを提案する。
本手法を単細胞および胚発生データセットにまたがって検証し,細胞内決定を形作る隠蔽熱力学および情報的制約を明らかにする能力を実証した。
- 参考スコア(独自算出の注目度): 1.751284969350841
- License:
- Abstract: Cellular development follows a stochastic yet rule-governed trajectory, though the underlying principles remain elusive. Here, we propose that cellular development follows paths of least action, aligning with foundational physical laws that govern dynamic systems across nature. We introduce a computational framework that takes advantage of the deep connection between the principle of least action and maximum entropy to model developmental processes using Transformers architecture. This approach enables precise quantification of entropy production, information flow curvature, and local irreversibility for developmental asymmetry in single-cell RNA sequence data. Within this unified framework, we provide interpretable metrics: entropy to capture exploration-exploitation trade-offs, curvature to assess plasticity-elasticity dynamics, and entropy production to characterize dedifferentiation and transdifferentiation. We validate our method across both single-cell and embryonic development datasets, demonstrating its ability to reveal hidden thermodynamic and informational constraints shaping cellular fate decisions.
- Abstract(参考訳): 細胞発達は確率的だが規則に支配された軌道に従うが、根底にある原理はいまだ解明されていない。
ここでは, 細胞発達は, 自然界の力学系を支配する基礎的物理法則と整合して, 最小作用の経路に従うことを提案する。
本稿では,最小アクションの原理と最大エントロピーの深い関係を利用して,トランスフォーマーアーキテクチャを用いた発達過程をモデル化する計算フレームワークを提案する。
このアプローチは、単一セルRNA配列データにおける発生非対称性に対するエントロピー生成、情報フロー曲率、局所的不可逆性の正確な定量化を可能にする。
この統合された枠組みの中では、探索・露光トレードオフを捕捉するためのエントロピー、塑性-弾性力学を評価するための曲率、脱微分と超微分を特徴付けるエントロピー生産という解釈可能な指標を提供する。
本手法を単細胞および胚発生データセットにまたがって検証し,細胞内決定を形作る隠蔽熱力学および情報的制約を明らかにする能力を実証した。
関連論文リスト
- Generalized Flow Matching for Transition Dynamics Modeling [14.76793118877456]
局所力学から非線形性を学習することでシミュレーションをウォームアップするデータ駆動手法を提案する。
具体的には、局所力学データからポテンシャルエネルギー関数を推定し、2つの準安定状態間の可塑性経路を求める。
提案手法の有効性を検証するため, 合成分子系と実世界の分子系の両方において, 確率的経路をサンプリングする手法の有効性を検証する。
論文 参考訳(メタデータ) (2024-10-19T15:03:39Z) - Latent Space Energy-based Neural ODEs [73.01344439786524]
本稿では,連続時間列を表現するために設計された新しい深部力学モデルを提案する。
マルコフ連鎖モンテカルロの最大推定値を用いてモデルを訓練する。
振動系, ビデオ, 実世界の状態系列(MuJoCo)の実験結果から, 学習可能なエネルギーベース先行モデルの方が既存のモデルより優れていることが示された。
論文 参考訳(メタデータ) (2024-09-05T18:14:22Z) - The Origin and Evolution of Information Handling [0.6963971634605796]
情報ファーストアプローチは、ホフメイユの(F, A)-システムと時間的パラメトリゼーションとマルチスケール因果関係を統合する。
我々のモデルは、正規言語を認識する単純な反応ネットワークから、記憶と予測能力を備えた自己複製化学システムまで、情報処理の進化を辿る。
論文 参考訳(メタデータ) (2024-04-05T19:35:38Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
拡散モデル(DPM)は急速に進化し、合成データのシミュレーションにおける主要な生成モデルの一つとなっている。
本稿では,個人が訪れた物理的位置を表す変数列である合成個別位置軌跡(ILT)の生成にDPMを用いることを提案する。
論文 参考訳(メタデータ) (2024-02-19T15:57:39Z) - Constrained Synthesis with Projected Diffusion Models [47.56192362295252]
本稿では, 制約や物理原理の遵守を満足し, 証明する上で, 生成拡散プロセスへのアプローチを紹介する。
提案手法は, 従来の生成拡散過程を制約分布問題として再キャストし, 制約の順守を保証する。
論文 参考訳(メタデータ) (2024-02-05T22:18:16Z) - Dynamic Kernel-Based Adaptive Spatial Aggregation for Learned Image
Compression [63.56922682378755]
本稿では,空間アグリゲーション機能の拡張に焦点をあて,動的カーネルベースの変換符号化を提案する。
提案したアダプティブアグリゲーションはカーネルオフセットを生成し、コンテント条件付き範囲の有効な情報をキャプチャして変換を支援する。
実験により,本手法は,最先端の学習手法と比較して,3つのベンチマークにおいて高い速度歪み性能が得られることを示した。
論文 参考訳(メタデータ) (2023-08-17T01:34:51Z) - Free-Form Variational Inference for Gaussian Process State-Space Models [21.644570034208506]
ベイズGPSSMにおける新しい推論法を提案する。
本手法はハミルトニアンモンテカルロの誘導による自由形式変分推論に基づく。
提案手法は, 競合する手法よりも, 遷移力学や潜伏状態をより正確に学習できることを示す。
論文 参考訳(メタデータ) (2023-02-20T11:34:16Z) - Evolution TANN and the discovery of the internal variables and evolution
equations in solid mechanics [0.0]
材料表現をインクリメンタルな定式化から切り離す新しい手法を提案する。
熱力学に基づくニューラルネットワーク(TANN)と内部変数の理論にインスパイアされた進化 TANN(eTANN)は、連続時間である。
提案手法の主な特徴は、通常の微分方程式の形で内部変数の進化方程式の発見である。
論文 参考訳(メタデータ) (2022-09-27T09:25:55Z) - Growing Isotropic Neural Cellular Automata [63.91346650159648]
我々は、元のGrowing NCAモデルには、学習された更新規則の異方性という重要な制限があると主張している。
細胞系は2つの方法のいずれかによって、正確な非対称パターンを成長させる訓練が可能であることを実証する。
論文 参考訳(メタデータ) (2022-05-03T11:34:22Z) - Inference of Affordances and Active Motor Control in Simulated Agents [0.5161531917413706]
本稿では,出力確率,時間的予測,モジュール型人工ニューラルネットワークアーキテクチャを提案する。
我々のアーキテクチャは、割当マップと解釈できる潜在状態が発達していることを示す。
アクティブな推論と組み合わせることで、フレキシブルでゴール指向の動作が実行可能であることを示す。
論文 参考訳(メタデータ) (2022-02-23T14:13:04Z) - A Near-Optimal Gradient Flow for Learning Neural Energy-Based Models [93.24030378630175]
学習エネルギーベースモデル(EBM)の勾配流を最適化する新しい数値スキームを提案する。
フォッカー・プランク方程式から大域相対エントロピーの2階ワッサーシュタイン勾配流を導出する。
既存のスキームと比較して、ワッサーシュタイン勾配流は実データ密度を近似するより滑らかで近似的な数値スキームである。
論文 参考訳(メタデータ) (2019-10-31T02:26:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。