論文の概要: A physics informed neural network approach to simulating ice dynamics governed by the shallow ice approximation
- arxiv url: http://arxiv.org/abs/2504.08136v1
- Date: Thu, 10 Apr 2025 21:32:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-14 14:17:30.626181
- Title: A physics informed neural network approach to simulating ice dynamics governed by the shallow ice approximation
- Title(参考訳): 浅氷近似による氷力学シミュレーションのための物理情報ニューラルネットワークアプローチ
- Authors: Kapil Chawla, William Holmes,
- Abstract要約: 我々は,氷床力学をシミュレーションする物理情報ニューラルネットワーク (PINN) を開発した。
複雑な自由境界条件のキャプチャにおけるモデルの有効性を検証する。
このアプローチを現実の環境で説明するために、2000年と2018年の航空物理データを取り入れて、デヴォン氷冠の力学をシミュレートする。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In this article we develop a Physics Informed Neural Network (PINN) approach to simulate ice sheet dynamics governed by the Shallow Ice Approximation. This problem takes the form of a time-dependent parabolic obstacle problem. Prior work has used this approach to address the stationary obstacle problem and here we extend it to the time dependent problem. Through comprehensive 1D and 2D simulations, we validate the model's effectiveness in capturing complex free-boundary conditions. By merging traditional mathematical modeling with cutting-edge deep learning methods, this approach provides a scalable and robust solution for predicting temporal variations in ice thickness. To illustrate this approach in a real world setting, we simulate the dynamics of the Devon Ice Cap, incorporating aerogeophysical data from 2000 and 2018.
- Abstract(参考訳): 本稿では,氷床力学をシミュレートする物理情報ニューラルネットワーク (PINN) を開発した。
この問題は時間依存の放物的障害物問題の形を取る。
従来の研究では、定常的障害問題に対処するためにこのアプローチを使用しており、ここでは時間依存問題に拡張する。
総合的な1次元および2次元シミュレーションを通じて、複雑な自由境界条件を捕捉するモデルの有効性を検証する。
従来の数学的モデリングを最先端のディープラーニング手法と組み合わせることで、この手法は氷厚の時間変化を予測するスケーラブルで堅牢なソリューションを提供する。
このアプローチを現実の環境で説明するために、2000年と2018年の航空物理データを取り入れて、デヴォン氷冠の力学をシミュレートする。
関連論文リスト
- Learning Effective Dynamics across Spatio-Temporal Scales of Complex Flows [4.798951413107239]
本稿では,グラフニューラルネットワーク(GNN)とアテンションに基づく自己回帰モデルを活用したグラフベース効果的ダイナミクス学習(Graph-LED)を提案する。
本研究では,シリンダーを過ぎる流れや,レイノルズ数の範囲の後方方向のステップを流れる流れなど,流体力学の一連の問題に対する提案手法を評価する。
論文 参考訳(メタデータ) (2025-02-11T22:14:30Z) - Trajectory Flow Matching with Applications to Clinical Time Series Modeling [77.58277281319253]
Trajectory Flow Matching (TFM) は、シミュレーションのない方法でニューラルSDEを訓練し、ダイナミックスを通してバックプロパゲーションをバイパスする。
絶対的性能と不確実性予測の観点から,3つの臨床時系列データセットの性能向上を実証した。
論文 参考訳(メタデータ) (2024-10-28T15:54:50Z) - ClimODE: Climate and Weather Forecasting with Physics-informed Neural ODEs [14.095897879222676]
統計力学の重要な原理を実装した連続時間プロセスであるClimODEを提案する。
ClimODEは、値保存ダイナミクスによる正確な気象進化をモデル化し、ニューラルネットワークとしてグローバルな気象輸送を学習する。
提案手法は,大域的,地域的予測において,パラメータ化の桁違いで既存のデータ駆動手法より優れる。
論文 参考訳(メタデータ) (2024-04-15T06:38:21Z) - DeepSimHO: Stable Pose Estimation for Hand-Object Interaction via
Physics Simulation [81.11585774044848]
我々は、前方物理シミュレーションと後方勾配近似とニューラルネットワークを組み合わせた新しいディープラーニングパイプラインであるDeepSimHOを紹介する。
提案手法は, 評価の安定性を著しく向上し, テスト時間最適化よりも優れた効率性を実現する。
論文 参考訳(メタデータ) (2023-10-11T05:34:36Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Reduced Order Probabilistic Emulation for Physics-Based Thermosphere
Models [0.0]
本研究は,TIE-GCM(Thermosphere Ionosphere Electrodynamics Circulation General Model)のための効率的なサロゲートを作成するために,確率論的機械学習(ML)手法を採用することを目的とする。
利用可能なデータ全体で、TIE-GCM ROPEは従来の線形手法と同様の誤差を示しながら、嵐時モデリングを改善した。
また,TIE-GCM ROPEは,TIE-GCM密度から得られる位置を5kmの偏りで捉えることができることを示す。
論文 参考訳(メタデータ) (2022-11-08T17:36:37Z) - A variational neural network approach for glacier modelling with
nonlinear rheology [1.4438155481047366]
まず、非ニュートン流モデルの解を境界制約付き変分積分の最小化器に定式化する。
次に、損失関数が変分積分と混合境界条件からのソフト制約であるディープニューラルネットワークにより解を近似する。
実世界のスケーリングにおける不安定性に対処するため,ネットワークの入力を第1層で再正規化し,各境界に対する正規化係数のバランスをとる。
論文 参考訳(メタデータ) (2022-09-05T18:23:59Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
時間依存偏微分方程式を解くための物理インフォームド・フレームワークを提案する。
我々のモデルは離散コサイン変換を用いて空間的および反復的なニューラルネットワークを符号化する。
ナヴィエ・ストークス方程式に対するテイラー・グリーン渦解の実験結果を示す。
論文 参考訳(メタデータ) (2022-02-24T20:46:52Z) - A posteriori learning of quasi-geostrophic turbulence parametrization:
an experiment on integration steps [4.212677330241214]
本研究では,動的解法と有意義な$textita reari$ベースの損失関数を併用したモデル学習が,安定かつ現実的なシミュレーションに繋がることを示す。
論文 参考訳(メタデータ) (2021-11-12T17:59:52Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
本稿では,機械学習のフレームワークとモデルの実装について紹介する。
グラフネットワーク・ベース・シミュレータ(GNS)と呼ばれる我々のフレームワークは、グラフ内のノードとして表現された粒子で物理系の状態を表現し、学習されたメッセージパスによって動的を計算します。
我々のモデルは,訓練中に数千の粒子による1段階の予測から,異なる初期条件,数千の時間ステップ,少なくとも1桁以上の粒子をテスト時に一般化できることを示す。
論文 参考訳(メタデータ) (2020-02-21T16:44:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。