論文の概要: Quality Diversity for Variational Quantum Circuit Optimization
- arxiv url: http://arxiv.org/abs/2504.08459v1
- Date: Fri, 11 Apr 2025 11:44:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-14 14:18:28.367306
- Title: Quality Diversity for Variational Quantum Circuit Optimization
- Title(参考訳): 変分量子回路最適化のための品質多様性
- Authors: Maximilian Zorn, Jonas Stein, Maximilian Balthasar Mansky, Philipp Altmann, Michael Kölle, Claudia Linnhoff-Popien,
- Abstract要約: 品質多様性 (QD) 探索手法は、ダイバーシティ駆動の最適化と、回路ソリューション候補の最適化品質に関する洞察を提供するユーザ特定機能を組み合わせたものである。
本稿では,QD-CMA法で容易に最適化できる行列ベースの回路工学を導入し,表現性やゲート多様性などの回路品質特性を品質評価として評価する。
- 参考スコア(独自算出の注目度): 4.385485960663339
- License:
- Abstract: Optimizing the architecture of variational quantum circuits (VQCs) is crucial for advancing quantum computing (QC) towards practical applications. Current methods range from static ansatz design and evolutionary methods to machine learned VQC optimization, but are either slow, sample inefficient or require infeasible circuit depth to realize advantages. Quality diversity (QD) search methods combine diversity-driven optimization with user-specified features that offer insight into the optimization quality of circuit solution candidates. However, the choice of quality measures and the representational modeling of the circuits to allow for optimization with the current state-of-the-art QD methods like covariance matrix adaptation (CMA), is currently still an open problem. In this work we introduce a directly matrix-based circuit engineering, that can be readily optimized with QD-CMA methods and evaluate heuristic circuit quality properties like expressivity and gate-diversity as quality measures. We empirically show superior circuit optimization of our QD optimization w.r.t. speed and solution score against a set of robust benchmark algorithms from the literature on a selection of NP-hard combinatorial optimization problems.
- Abstract(参考訳): 変分量子回路(VQC)のアーキテクチャを最適化することは、量子コンピューティング(QC)を実用化するために不可欠である。
現在の手法は静的アンサッツ設計や進化的手法から、機械学習されたVQC最適化まで様々であるが、性能が遅く、サンプルの非効率性があるか、利点を実現するには回路深度が不要である。
品質多様性 (QD) 探索手法は、ダイバーシティ駆動の最適化と、回路ソリューション候補の最適化品質に関する洞察を提供するユーザ特定機能を組み合わせたものである。
しかし、共分散行列適応(CMA)のような現在の最先端QD手法で最適化できる品質測定と回路の表現モデルの選択は、現時点では未解決の問題である。
本研究では,QD-CMA法で容易に最適化できる直接行列ベース回路工学を導入し,表現率やゲート多様性などのヒューリスティック回路品質特性を品質評価として評価する。
我々は、NP-hard組合せ最適化問題の選択に関する文献から、一連の頑健なベンチマークアルゴリズムに対して、QD最適化の速度と解のスコアの優れた回路最適化を実証的に示す。
関連論文リスト
- Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
変分量子アルゴリズム(VQA)は、最適化と機械学習問題を解決するための有望な量子代替手段として登場した。
本稿では,回路設計が2つの分類問題に対して得られる性能に与える影響を実験的に示す。
また、実量子コンピュータのシミュレーションにおいて、ノイズの存在下で得られた回路の劣化について検討する。
論文 参考訳(メタデータ) (2024-04-17T11:00:12Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
この設定における中心的な課題は最適化問題の解によるバックプロパゲーションであり、しばしば閉形式を欠いている。
本稿では, 非線形最適化の後方通過に関する理論的知見を提供し, 特定の反復法による線形システムの解と等価であることを示す。
Folded Optimizationと呼ばれるシステムが提案され、非ローリングなソルバ実装からより効率的なバックプロパゲーションルールを構築する。
論文 参考訳(メタデータ) (2023-12-28T23:15:18Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
分子目的を最適化するための様々なZO最適化手法の有効性について検討する。
ZO符号に基づく勾配降下(ZO-signGD)の利点を示す。
本稿では,Guurcamol スイートから広く使用されているベンチマークタスクに対して,ZO 最適化手法の有効性を示す。
論文 参考訳(メタデータ) (2022-10-27T01:58:10Z) - Prog-QAOA: Framework for resource-efficient quantum optimization through classical programs [0.0]
現在の量子最適化アルゴリズムでは、元の問題を二進最適化問題として表現し、量子デバイスに適した等価コストハミルトニアンに変換する必要がある。
目的関数を計算し、制約を認証するための古典的プログラムを設計し、後に量子回路にコンパイルする。
我々は、このアイデアをトラベリングセールスマン問題やMax-K$-Cutといった最適化タスクに活用し、関連するすべてのコスト対策に関して最適に近い回路を得る。
論文 参考訳(メタデータ) (2022-09-07T18:01:01Z) - Performance comparison of optimization methods on variational quantum
algorithms [2.690135599539986]
変分量子アルゴリズム(VQA)は、学術・工業研究への応用に短期的な量子ハードウェアを使用するための有望な道を提供する。
SLSQP, COBYLA, CMA-ES, SPSAの4つの最適化手法の性能について検討した。
論文 参考訳(メタデータ) (2021-11-26T12:13:20Z) - Quantum variational optimization: The role of entanglement and problem
hardness [0.0]
本稿では, 絡み合いの役割, 変動量子回路の構造, 最適化問題の構造について検討する。
数値計算の結果,絡み合うゲートの分布を問題のトポロジに適応させる利点が示唆された。
リスク型コスト関数に条件値を適用することで最適化が向上し、最適解と重複する確率が増大することを示す。
論文 参考訳(メタデータ) (2021-03-26T14:06:54Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
未知パラメータで最適化問題を解くには、未知パラメータの値を予測し、これらの値を用いて問題を解くための予測モデルを学ぶ必要がある。
最近の研究によると、複雑なトレーニングモデルパイプラインのレイヤーとして最適化の問題を含めると、観測されていない意思決定の繰り返しを予測することになる。
我々は,大規模最適化問題の低次元サロゲートモデルを学習することにより,解の質を向上させることができることを示す。
論文 参考訳(メタデータ) (2020-06-18T19:11:54Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。