論文の概要: Exploring utilization of generative AI for research and education in data-driven materials science
- arxiv url: http://arxiv.org/abs/2504.08817v1
- Date: Wed, 09 Apr 2025 11:15:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:56:12.652509
- Title: Exploring utilization of generative AI for research and education in data-driven materials science
- Title(参考訳): データ駆動材料科学における生成AIの研究開発への活用を探る
- Authors: Takahiro Misawa, Ai Koizumi, Ryo Tamura, Kazuyoshi Yoshimi,
- Abstract要約: 2024年7月、私たちは、生成AIが研究と教育を促進する方法について調査するハッカソン、AIMHack2024を組織しました。
材料科学、情報科学、バイオインフォマティクス、凝縮物質物理学の研究者たちが協力して、生成AIが研究と教育をどのように促進するかを探求した。
本稿では、AIによるソフトウェア試験、ソフトウェアのためのAIチューターの構築、ソフトウェアのためのGUIアプリケーションの開発に関するトピックについて述べる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Generative AI has recently had a profound impact on various fields, including daily life, research, and education. To explore its efficient utilization in data-driven materials science, we organized a hackathon -- AIMHack2024 -- in July 2024. In this hackathon, researchers from fields such as materials science, information science, bioinformatics, and condensed matter physics worked together to explore how generative AI can facilitate research and education. Based on the results of the hackathon, this paper presents topics related to (1) conducting AI-assisted software trials, (2) building AI tutors for software, and (3) developing GUI applications for software. While generative AI continues to evolve rapidly, this paper provides an early record of its application in data-driven materials science and highlights strategies for integrating AI into research and education.
- Abstract(参考訳): 最近、ジェネレーティブAIは、日常生活、研究、教育など様々な分野に多大な影響を与えている。
2024年7月、データ駆動材料科学における効率的な利用を探るため、ハッカソン「AIMHack2024」を組織した。
このハッカソンでは、材料科学、情報科学、バイオインフォマティクス、凝縮物質物理学などの分野の研究者が協力して、生成的AIが研究と教育をどのように促進するかを探求した。
このハッカソンの結果に基づき,(1)AI支援ソフトウェア試行,(2)ソフトウェアのためのAIチューターの構築,(3)ソフトウェアのためのGUIアプリケーションの開発に関する話題を提示する。
生成AIは急速に進化を続けているが、本論文はデータ駆動材料科学におけるその応用の早期記録を提供し、研究と教育にAIを統合する戦略を強調している。
関連論文リスト
- Transforming Science with Large Language Models: A Survey on AI-assisted Scientific Discovery, Experimentation, Content Generation, and Evaluation [58.064940977804596]
多くの新しいAIモデルとツールが提案され、世界中の研究者や学者が研究をより効果的かつ効率的に実施できるようにすることを約束している。
これらのツールの欠点と誤用の可能性に関する倫理的懸念は、議論の中で特に顕著な位置を占める。
論文 参考訳(メタデータ) (2025-02-07T18:26:45Z) - Artificial intelligence to automate the systematic review of scientific
literature [0.0]
我々は過去15年間に提案されたAI技術について,研究者が科学的文献の体系的な分析を行うのを助けるために調査を行った。
現在サポートされているタスク、適用されるアルゴリズムの種類、34の初等研究で提案されているツールについて説明する。
論文 参考訳(メタデータ) (2024-01-13T19:12:49Z) - Drivers and Barriers of AI Adoption and Use in Scientific Research [0.0]
我々は、科学者の人的資本と、協力者や機関のネットワークで利用可能な外部リソースに焦点をあて、科学研究におけるAIの統合について研究する。
我々の結果は、AIは探索の趣味を持つドメイン科学者によって開拓され、コンピュータ科学者、経験豊富なAI科学者、そして初期のキャリア研究者のネットワークに埋め込まれていることを示唆している。
論文 参考訳(メタデータ) (2023-12-15T14:49:13Z) - Best uses of ChatGPT and Generative AI for computer science research [0.0]
本稿では,計算機科学研究におけるChatGPTおよびその他の生成AI技術の多様な応用について検討する。
我々は、ブレインストーミング研究のアイデア、学術論文の起草とスタイリングを支援すること、最先端のセクションの合成を支援することなどの革新的な用途を強調した。
論文 参考訳(メタデータ) (2023-11-18T21:57:54Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
人工知能(AI)は数十年にわたり、技術と研究において大きな進歩を遂げてきた。
高いコンピューティングパワーの必要性は、より高い二酸化炭素排出量をもたらし、研究の公正性を損なう。
コンピューティングリソースの課題とAIの環境への影響に取り組むため、グリーンコンピューティングはホットな研究トピックとなっている。
論文 参考訳(メタデータ) (2023-11-01T11:16:41Z) - AI empowering research: 10 ways how science can benefit from AI [0.0]
本稿では,人工知能(AI)が科学的研究に与える影響について考察する。
強力な参照ツール、研究問題の理解の改善、研究質問生成の改善、最適化された研究設計、スタブデータ生成、データ変換、高度なデータ分析、AI支援レポートなど、AIが科学者の仕事に革命をもたらす10の方法を強調している。
論文 参考訳(メタデータ) (2023-07-17T18:41:18Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
機械学習とAIの最近の進歩は、技術革新、製品開発、社会全体を破壊している。
AIは、科学的な実践とモデル発見のための高品質なデータの大規模なデータセットへのアクセスがより困難であるため、基礎科学にはあまり貢献していない。
ここでは、科学的な発見に対するAI駆動、自動化、クローズドループアプローチの側面を調査し、調査する。
論文 参考訳(メタデータ) (2023-07-09T21:16:56Z) - Artificial intelligence adoption in the physical sciences, natural
sciences, life sciences, social sciences and the arts and humanities: A
bibliometric analysis of research publications from 1960-2021 [73.06361680847708]
1960年には333の研究分野の14%がAIに関連していたが、1972年には全研究分野の半分以上、1986年には80%以上、現在では98%以上まで増加した。
1960年には、333の研究分野の14%がAI(コンピュータ科学の多くの分野)に関連していたが、1972年までに全研究分野の半分以上、1986年には80%以上、現在では98%以上まで増加した。
我々は、現在の急上昇の状況が異なっており、学際的AI応用が持続する可能性が高いと結論付けている。
論文 参考訳(メタデータ) (2023-06-15T14:08:07Z) - Artificial Intelligence in Concrete Materials: A Scientometric View [77.34726150561087]
本章は, コンクリート材料用AI研究の主目的と知識構造を明らかにすることを目的としている。
まず、1990年から2020年にかけて発行された389の雑誌記事が、ウェブ・オブ・サイエンスから検索された。
キーワード共起分析やドキュメント共起分析などのサイエントメトリックツールを用いて,研究分野の特徴と特徴を定量化した。
論文 参考訳(メタデータ) (2022-09-17T18:24:56Z) - On the Evolution of A.I. and Machine Learning: Towards a Meta-level
Measuring and Understanding Impact, Influence, and Leadership at Premier A.I.
Conferences [0.26999000177990923]
我々は、過去数十年間、AIと機械学習研究者の影響力、影響力、リーダーシップの分析を可能にする手段を提示する。
我々は,1969年に開催された第1回IJCAI(International Joint Conference on Artificial Intelligence)以降,AIと機械学習のフラッグシップカンファレンスで発表された論文について検討する。
論文 参考訳(メタデータ) (2022-05-26T03:41:12Z) - Learning from learning machines: a new generation of AI technology to
meet the needs of science [59.261050918992325]
科学的な発見のためのAIの有用性を高めるための新たな機会と課題を概説する。
産業におけるAIの目標と科学におけるAIの目標の区別は、データ内のパターンを識別することと、データから世界のパターンを発見することとの間に緊張を生じさせる。
論文 参考訳(メタデータ) (2021-11-27T00:55:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。