Quantum-Inspired Portfolio Optimization In The QUBO Framework
- URL: http://arxiv.org/abs/2410.05932v3
- Date: Thu, 14 Nov 2024 03:05:23 GMT
- Title: Quantum-Inspired Portfolio Optimization In The QUBO Framework
- Authors: Ying-Chang Lu, Chao-Ming Fu, Lien-Po Yu, Yen-Jui Chang, Ching-Ray Chang,
- Abstract summary: A quantum-inspired optimization approach is proposed to study the portfolio optimization aimed at selecting an optimal mix of assets.
This research contributes to the growing body of literature on quantum-inspired techniques in finance, demonstrating its potential as a useful tool for asset allocation and portfolio management.
- Score: 0.0
- License:
- Abstract: A quantum-inspired optimization approach is proposed to study the portfolio optimization aimed at selecting an optimal mix of assets based on the risk-return trade-off to achieve the desired goal in investment. By integrating conventional approaches with quantum-inspired methods for penalty coefficient estimation, this approach enables faster and accurate solutions to portfolio optimization which is validated through experiments using a real-world dataset of quarterly financial data spanning over ten-year period. In addition, the proposed preprocessing method of two-stage search further enhances the effectiveness of our approach, showing the ability to improve computational efficiency while maintaining solution accuracy through appropriate setting of parameters. This research contributes to the growing body of literature on quantum-inspired techniques in finance, demonstrating its potential as a useful tool for asset allocation and portfolio management.
Related papers
- Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Then framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by joint predictive models.
arXiv Detail & Related papers (2024-09-07T19:52:14Z) - Deep Reinforcement Learning and Mean-Variance Strategies for Responsible Portfolio Optimization [49.396692286192206]
We study the use of deep reinforcement learning for responsible portfolio optimization by incorporating ESG states and objectives.
Our results show that deep reinforcement learning policies can provide competitive performance against mean-variance approaches for responsible portfolio allocation.
arXiv Detail & Related papers (2024-03-25T12:04:03Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - A Novel Knapsack-based Financial Portfolio Optimization using Quantum Approximate Optimization Algorithm [2.6603181502541986]
We propose a method that uses the quantum computing capabilities of the quantum walk mixer with the quantum approximate optimization algorithm (QAOA) to address the challenges presented by the NP-hard problem.
Our study successfully achieves the approximate ratio of the portfolio optimization technique using a circuit layer of p >= 3, compared to the classical best-known solution of the knapsack problem.
arXiv Detail & Related papers (2024-02-11T08:20:26Z) - Exploring the synergistic potential of quantum annealing and gate model
computing for portfolio optimization [2.432141667343098]
We extend upon a study to use the best of both quantum annealing and gate-based quantum computing systems.
We conduct tests on real-world stock data from the Indian stock market on up to 64 assets.
Our findings suggest that hybrid annealer-gate quantum computing can be a valuable tool for portfolio managers seeking to optimize their investment portfolios.
arXiv Detail & Related papers (2023-05-02T15:02:13Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
We study optimization of areas under precision-recall curves (AUPRC), which is widely used for imbalanced tasks.
We develop novel momentum methods with a better iteration of $O (1/epsilon4)$ for finding an $epsilon$stationary solution.
We also design a novel family of adaptive methods with the same complexity of $O (1/epsilon4)$, which enjoy faster convergence in practice.
arXiv Detail & Related papers (2021-07-02T16:21:52Z) - Hybrid Quantum Investment Optimization with Minimal Holding Period [0.0]
We propose a hybrid quantum-classical algorithm for dynamic portfolio optimization with minimal holding period.
We found the optimal investment trajectory in a dataset of 50 assets spanning a one year trading period using the D-Wave 2000Q processor.
arXiv Detail & Related papers (2020-12-02T11:26:47Z) - Quantum walk-based portfolio optimisation [0.0]
This paper proposes a highly efficient quantum algorithm for portfolio optimisation targeted at near-term noisy intermediate-scale quantum computers.
Recent work by Hodson et al. explored potential application of hybrid quantum-classical algorithms to the problem of financial portfolio rebalancing.
arXiv Detail & Related papers (2020-11-16T16:11:33Z) - Hybrid quantum-classical optimization for financial index tracking [0.0]
Tracking a financial index boils down to replicating its trajectory of returns for a well-defined time span by investing in a subset of the securities included in the benchmark.
Picking the optimal combination of assets becomes a challenging weighted-hard problem even for moderately large indices consisting of dozens or hundreds of assets.
We introduce a pruning algorithm to find weighted combinations of assets subject to cardinality constraints.
arXiv Detail & Related papers (2020-08-27T10:59:21Z) - Bayesian Optimization for Selecting Efficient Machine Learning Models [53.202224677485525]
We present a unified Bayesian Optimization framework for jointly optimizing models for both prediction effectiveness and training efficiency.
Experiments on model selection for recommendation tasks indicate models selected this way significantly improves model training efficiency.
arXiv Detail & Related papers (2020-08-02T02:56:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.