論文の概要: LEMUR Neural Network Dataset: Towards Seamless AutoML
- arxiv url: http://arxiv.org/abs/2504.10552v4
- Date: Wed, 24 Sep 2025 10:29:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-25 14:09:11.14392
- Title: LEMUR Neural Network Dataset: Towards Seamless AutoML
- Title(参考訳): LEMUR Neural Network Dataset: Seamless AutoMLを目指して
- Authors: Arash Torabi Goodarzi, Roman Kochnev, Waleed Khalid, Hojjat Torabi Goudarzi, Furui Qin, Tolgay Atinc Uzun, Yashkumar Sanjaybhai Dhameliya, Yash Kanubhai Kathiriya, Zofia Antonina Bentyn, Dmitry Ignatov, Radu Timofte,
- Abstract要約: 我々は、PyTorchベースのニューラルネットワークの大規模なコレクションを提供するオープンソースのデータセットとフレームワークであるLEMURを紹介する。
各モデルは統一されたテンプレートに従い、構成と結果が構造化データベースに格納され、一貫性が保証される。
LEMURはAutoMLの研究を加速し、公正なベンチマークを可能にし、大規模ニューラルネットワーク研究の障壁を減らすことを目的としている。
- 参考スコア(独自算出の注目度): 35.57280723615144
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural networks are the backbone of modern artificial intelligence, but designing, evaluating, and comparing them remains labor-intensive. While numerous datasets exist for training, there are few standardized collections of the models themselves. We introduce LEMUR, an open-source dataset and framework that provides a large collection of PyTorch-based neural networks across tasks such as classification, segmentation, detection, and natural language processing. Each model follows a unified template, with configurations and results stored in a structured database to ensure consistency and reproducibility. LEMUR integrates automated hyperparameter optimization via Optuna, includes statistical analysis and visualization tools, and offers an API for seamless access to performance data. The framework is extensible, allowing researchers to add new models, datasets, or metrics without breaking compatibility. By standardizing implementations and unifying evaluation, LEMUR aims to accelerate AutoML research, enable fair benchmarking, and reduce barriers to large-scale neural network experimentation. To support adoption and collaboration, LEMUR and its plugins are released under the MIT license at: https://github.com/ABrain-One/nn-dataset https://github.com/ABrain-One/nn-plots https://github.com/ABrain-One/nn-vr
- Abstract(参考訳): ニューラルネットワークは現代の人工知能のバックボーンだが、設計、評価、比較は労働集約的である。
トレーニング用に多数のデータセットが存在するが、モデル自体の標準化されたコレクションはほとんどない。
我々は、分類、セグメンテーション、検出、自然言語処理といったタスクにまたがって、PyTorchベースのニューラルネットワークの大規模なコレクションを提供するオープンソースのデータセットとフレームワークであるLEMURを紹介する。
各モデルは、一貫性と再現性を確保するため、構造化データベースに設定と結果が格納された統合テンプレートに従っている。
LEMURはOptunaを通じて自動ハイパーパラメータ最適化を統合し、統計分析と視覚化ツールを含み、パフォーマンスデータへのシームレスなアクセスのためのAPIを提供する。
このフレームワークは拡張可能で、互換性を損なうことなく、新しいモデルやデータセット、メトリクスを追加できる。
LEMURは、実装の標準化と評価の統一によって、AutoMLの研究を加速し、公正なベンチマークを可能にし、大規模なニューラルネットワーク実験の障壁を減らすことを目指している。
LEMURとそのプラグインは、MITライセンス下でリリースされている。 https://github.com/ABrain-One/nn-dataset https://github.com/ABrain-One/nn-plots https://github.com/ABrain-One/nn-vr
関連論文リスト
- DLBacktrace: A Model Agnostic Explainability for any Deep Learning Models [1.747623282473278]
深層学習モデル決定に対する明確な洞察を提供するために設計された,モデルに依存しない手法であるDLBacktraceを紹介する。
本稿では,DLBacktraceの概要を概説し,その性能を既存の解釈可能性手法と比較する。
その結果,DLBacktraceは多種多様なタスクにおけるモデル行動の理解を効果的に促進することを示した。
論文 参考訳(メタデータ) (2024-11-19T16:54:30Z) - On-Device Language Models: A Comprehensive Review [26.759861320845467]
資源制約のあるデバイスに計算コストの高い大規模言語モデルをデプロイする際の課題について検討する。
論文は、デバイス上での言語モデル、その効率的なアーキテクチャ、および最先端の圧縮技術について考察する。
主要モバイルメーカーによるオンデバイス言語モデルのケーススタディは、実世界の応用と潜在的な利益を実証している。
論文 参考訳(メタデータ) (2024-08-26T03:33:36Z) - NNsight and NDIF: Democratizing Access to Open-Weight Foundation Model Internals [58.83169560132308]
NNsightとNDIFを導入し、非常に大きなニューラルネットワークによって学習された表現と計算の科学的研究を可能にする。
論文 参考訳(メタデータ) (2024-07-18T17:59:01Z) - Model Share AI: An Integrated Toolkit for Collaborative Machine Learning
Model Development, Provenance Tracking, and Deployment in Python [0.0]
モデル共有AI(AIMS)は、コラボレーティブモデル開発、モデル前駆者追跡、モデルデプロイメントを合理化するように設計された、使いやすいMLOpsプラットフォームである。
AIMSは、協調的なプロジェクト空間と、見当たらない評価データに基づいてモデル提出をランク付けする標準化されたモデル評価プロセスを備えている。
AIMSでは、Scikit-Learn、Keras、PyTorch、ONNXで構築されたMLモデルを、ライブREST APIや自動生成されたWebアプリにデプロイすることができる。
論文 参考訳(メタデータ) (2023-09-27T15:24:39Z) - Stochastic Configuration Machines for Industrial Artificial Intelligence [4.57421617811378]
産業人工知能(IAI)におけるコンフィグレーションネットワーク(SCN)の役割
本稿では、効率的なモデリングとデータサイズ削減を強調するために、SCMと呼ばれる新しいランダム化学習モデルを提案する。
いくつかのベンチマークデータセットと3つの産業応用に関する実験的研究が行われている。
論文 参考訳(メタデータ) (2023-08-25T05:52:41Z) - A Cloud-based Machine Learning Pipeline for the Efficient Extraction of
Insights from Customer Reviews [0.0]
本稿では,パイプラインに統合された機械学習手法を用いて,顧客レビューから洞察を抽出するクラウドベースのシステムを提案する。
トピックモデリングには、自然言語処理用に設計されたトランスフォーマーベースニューラルネットワークを用いる。
本システムでは,このタスクの既存のトピックモデリングやキーワード抽出ソリューションよりも優れた結果が得られる。
論文 参考訳(メタデータ) (2023-06-13T14:07:52Z) - TSGM: A Flexible Framework for Generative Modeling of Synthetic Time Series [61.436361263605114]
時系列データは、研究者と産業組織間のデータの共有を妨げるため、しばしば不足または非常に敏感である。
本稿では,合成時系列の生成モデリングのためのオープンソースフレームワークである時系列生成モデリング(TSGM)を紹介する。
論文 参考訳(メタデータ) (2023-05-19T10:11:21Z) - OmniForce: On Human-Centered, Large Model Empowered and Cloud-Edge
Collaborative AutoML System [85.8338446357469]
我々は人間中心のAutoMLシステムであるOmniForceを紹介した。
我々は、OmniForceがAutoMLシステムを実践し、オープン環境シナリオにおける適応型AIを構築する方法について説明する。
論文 参考訳(メタデータ) (2023-03-01T13:35:22Z) - Knowledge Transfer For On-Device Speech Emotion Recognition with Neural
Structured Learning [19.220263739291685]
音声感情認識(SER)は、ヒューマン・コンピュータ・インタラクション(HCI)において人気のある研究トピックである。
合成グラフ構築によるニューラル構造化学習(NSL)フレームワークを提案する。
実験の結果,音声サンプルとグラフを用いた軽量SERモデルの訓練は,小さなSERモデルを生成するだけでなく,モデル性能を向上させることができることがわかった。
論文 参考訳(メタデータ) (2022-10-26T18:38:42Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
ニューラルネットワークのチェックポイントのデータセットを構築し,パラメータの生成モデルをトレーニングする。
提案手法は,幅広い損失プロンプトに対するパラメータの生成に成功している。
我々は、教師付きおよび強化学習における異なるニューラルネットワークアーキテクチャとタスクに本手法を適用した。
論文 参考訳(メタデータ) (2022-09-26T17:59:58Z) - Concurrent Neural Tree and Data Preprocessing AutoML for Image
Classification [0.5735035463793008]
現在のSOTA (State-of-the-art) には、アルゴリズム検索空間の一部として入力データを操作するための従来の手法は含まれていない。
進化的多目的アルゴリズム設計エンジン(EMADE, Evolutionary Multi-objective Algorithm Design Engine)は、従来の機械学習手法のための多目的進化的検索フレームワークである。
CIFAR-10画像分類ベンチマークデータセットにおいて,これらの手法を検索空間の一部として含めることで,性能向上の可能性が示唆された。
論文 参考訳(メタデータ) (2022-05-25T20:03:09Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
本稿では,基本的なクロスプラットフォームテンソルフレームワークとスクリプト言語エンジンを使用しながら,すべての要件をサポートする統合デプロイメントパイプラインとフリー・ツー・オペレートアプローチを提案する。
しかし、このアプローチは、実際のプロダクショングレードシステムに機械学習機能を実際にデプロイするために必要な手順やパイプラインを提供していない。
論文 参考訳(メタデータ) (2021-12-22T14:45:37Z) - ESAI: Efficient Split Artificial Intelligence via Early Exiting Using
Neural Architecture Search [6.316693022958222]
ディープニューラルネットワークは、多くのコンピュータビジョン関連タスクにおいて、従来の機械学習アルゴリズムよりも優れています。
大部分のデバイスは、優れたディープラーニングモデルがサーバー上のデータを解析する責任を負う、クラウドコンピューティングの方法論を活用しています。
本稿では、クラウドとオンデバイスモデルの両方を活用可能な、IoTデバイスにデプロイするための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-21T04:47:53Z) - Resource-Aware Pareto-Optimal Automated Machine Learning Platform [1.6746303554275583]
新プラットフォーム Resource-Aware AutoML (RA-AutoML)
RA-AutoMLは、フレキシブルで一般化されたアルゴリズムで、複数の目的に合わせた機械学習モデルを構築することができる。
論文 参考訳(メタデータ) (2020-10-30T19:37:48Z) - Auto-PyTorch Tabular: Multi-Fidelity MetaLearning for Efficient and
Robust AutoDL [53.40030379661183]
Auto-PyTorchは、完全に自動化されたディープラーニング(AutoDL)を実現するフレームワーク
ディープニューラルネットワーク(DNN)のウォームスタートとアンサンブルのためのマルチフィデリティ最適化とポートフォリオ構築を組み合わせる。
Auto-PyTorchは、いくつかの最先端の競合製品よりもパフォーマンスが良いことを示す。
論文 参考訳(メタデータ) (2020-06-24T15:15:17Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
まず,データ駆動型教師付き深層学習と深部強化学習をURLLCに適用する方法を概説する。
このようなオープンな問題に対処するために、デバイスインテリジェンス、エッジインテリジェンス、およびURLLCのためのクラウドインテリジェンスを可能にするマルチレベルアーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-02-22T14:38:11Z) - The Microsoft Toolkit of Multi-Task Deep Neural Networks for Natural
Language Understanding [97.85957811603251]
MT-DNNはオープンソースの自然言語理解(NLU)ツールキットであり、研究者や開発者がカスタマイズされたディープラーニングモデルを訓練しやすくする。
PyTorchとTransformersをベースとして開発されたMT-DNNは、幅広いNLUタスクの迅速なカスタマイズを容易にするように設計されている。
MT-DNNのユニークな特徴は、対戦型マルチタスク学習パラダイムを用いた堅牢で移動可能な学習のサポートである。
論文 参考訳(メタデータ) (2020-02-19T03:05:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。