Universal Approximation with XL MIMO Systems: OTA Classification via Trainable Analog Combining
- URL: http://arxiv.org/abs/2504.12758v1
- Date: Thu, 17 Apr 2025 08:53:30 GMT
- Title: Universal Approximation with XL MIMO Systems: OTA Classification via Trainable Analog Combining
- Authors: Kyriakos Stylianopoulos, George C. Alexandropoulos,
- Abstract summary: We show that an eXtremely Large (XL) Multiple-Input Multiple-Output (MIMO) wireless system with appropriate analog combining components exhibits the properties of a universal function approximator, similar to a feedforward neural network.<n>We present a novel formulation for Over-The-Air (OTA) edge inference without requiring traditional digital processing or pre-processing at the transmitter.<n>Compared to deep learning approaches and conventional ELMs, the proposed framework achieves on par performance with orders of magnitude lower complexity, making it highly attractive for ultra low power wireless devices.
- Score: 22.304086107929137
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we demonstrate that an eXtremely Large (XL) Multiple-Input Multiple-Output (MIMO) wireless system with appropriate analog combining components exhibits the properties of a universal function approximator, similar to a feedforward neural network. By treating the XL MIMO channel coefficients as the random nodes of a hidden layer, and the receiver's analog combiner as a trainable output layer, we cast the end-to-end system to the Extreme Learning Machine (ELM) framework, leading to a novel formulation for Over-The-Air (OTA) edge inference without requiring traditional digital processing nor pre-processing at the transmitter. Through theoretical analysis and numerical evaluation, we showcase that XL-MIMO-ELM enables near-instantaneous training and efficient classification, suggesting the paradigm shift of beyond massive MIMO systems as neural networks alongside their profound communications role. Compared to deep learning approaches and conventional ELMs, the proposed framework achieves on par performance with orders of magnitude lower complexity, making it highly attractive for ultra low power wireless devices.
Related papers
- Random Orthogonalization for Federated Learning in Massive MIMO Systems [85.71432283670114]
We propose a novel communication design for federated learning (FL) in a massive multiple-input and multiple-output (MIMO) wireless system.
Key novelty of random orthogonalization comes from the tight coupling of FL and two unique characteristics of massive MIMO -- channel hardening and favorable propagation.
We extend this principle to the downlink communication phase and develop a simple but highly effective model broadcast method for FL.
arXiv Detail & Related papers (2022-10-18T14:17:10Z) - Signal Detection in MIMO Systems with Hardware Imperfections: Message
Passing on Neural Networks [101.59367762974371]
In this paper, we investigate signal detection in multiple-input-multiple-output (MIMO) communication systems with hardware impairments.
It is difficult to train a deep neural network (DNN) with limited pilot signals, hindering its practical applications.
We design an efficient message passing based Bayesian signal detector, leveraging the unitary approximate message passing (UAMP) algorithm.
arXiv Detail & Related papers (2022-10-08T04:32:58Z) - Over-the-Air Split Machine Learning in Wireless MIMO Networks [56.27831295707334]
In split machine learning (ML), different partitions of a neural network (NN) are executed by different computing nodes.
To ease communication burden, over-the-air computation (OAC) can efficiently implement all or part of the computation at the same time of communication.
arXiv Detail & Related papers (2022-10-07T15:39:11Z) - Hybrid Far- and Near-Field Channel Estimation for THz Ultra-Massive MIMO
via Fixed Point Networks [15.498866529344275]
Terahertz ultra-massive multiple-input multiple-output (THz UM-MIMO) is envisioned as one of the key enablers of 6G wireless systems.
We develop an efficient deep learning based channel estimator with adaptive complexity and linear convergence guarantee.
A major algorithmic innovation involves applying fixed point to compute the channel estimate while modeling neural networks with arbitrary depth and adapting to the hybrid-field channel conditions.
arXiv Detail & Related papers (2022-05-10T14:57:56Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
This work proposes a novel design for a practical RSMA receiver based on model-based deep learning (MBDL) methods.
The MBDL receiver is evaluated in terms of uncoded Symbol Error Rate (SER), throughput performance through Link-Level Simulations (LLS) and average training overhead.
Results reveal that the MBDL outperforms by a significant margin the SIC receiver with imperfect CSIR.
arXiv Detail & Related papers (2022-05-02T12:23:55Z) - CNN based Channel Estimation using NOMA for mmWave Massive MIMO System [0.0]
This paper proposes a convolutional neural network based approach to estimate the channel for millimeter wave (mmWave) systems built on a hybrid architecture.
A coarse estimation of the channel is first made from the received signal.
Numerical illustrations show that the proposed method outperforms least square (LS) estimate, minimum mean square error (MMSE) estimate and are close to the Cramer-Rao Bound (CRB)
arXiv Detail & Related papers (2021-08-01T05:33:55Z) - End-to-End Learning for Uplink MU-SIMO Joint Transmitter and
Non-Coherent Receiver Design in Fading Channels [11.182920270301304]
A novel end-to-end learning approach, namely JTRD-Net, is proposed for uplink multiuser single-input multiple-output (MU-SIMO) joint transmitter and non-coherent receiver design (JTRD) in fading channels.
The transmitter side is modeled as a group of parallel linear layers, which are responsible for multiuser waveform design.
The non-coherent receiver is formed by a deep feed-forward neural network (DFNN) so as to provide multiuser detection (MUD) capabilities.
arXiv Detail & Related papers (2021-05-04T02:47:59Z) - Deep Denoising Neural Network Assisted Compressive Channel Estimation
for mmWave Intelligent Reflecting Surfaces [99.34306447202546]
This paper proposes a deep denoising neural network assisted compressive channel estimation for mmWave IRS systems.
We first introduce a hybrid passive/active IRS architecture, where very few receive chains are employed to estimate the uplink user-to-IRS channels.
The complete channel matrix can be reconstructed from the limited measurements based on compressive sensing.
arXiv Detail & Related papers (2020-06-03T12:18:57Z) - A Compressive Sensing Approach for Federated Learning over Massive MIMO
Communication Systems [82.2513703281725]
Federated learning is a privacy-preserving approach to train a global model at a central server by collaborating with wireless devices.
We present a compressive sensing approach for federated learning over massive multiple-input multiple-output communication systems.
arXiv Detail & Related papers (2020-03-18T05:56:27Z) - ANN-Based Detection in MIMO-OFDM Systems with Low-Resolution ADCs [0.0]
We propose a multi-layer artificial neural network (ANN) that is trained with the Levenberg-Marquardt algorithm for use in signal detection.
We consider a blind detection scheme where data symbol estimation is carried out without knowing the channel state information at the receiver.
arXiv Detail & Related papers (2020-01-31T03:38:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.