論文の概要: Adaptive Non-local Observable on Quantum Neural Networks
- arxiv url: http://arxiv.org/abs/2504.13414v2
- Date: Sat, 26 Apr 2025 20:29:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:52.599781
- Title: Adaptive Non-local Observable on Quantum Neural Networks
- Title(参考訳): 量子ニューラルネットワーク上での適応的非局所観測
- Authors: Hsin-Yi Lin, Huan-Hsin Tseng, Samuel Yen-Chi Chen, Shinjae Yoo,
- Abstract要約: 量子回路のための適応的非局所測定フレームワークを提案する。
ハイゼンベルク像に着想を得て、VQC回転の最適化は観測可能な空間における軌道の追跡と一致することを示す。
非局所観測器と変分回転を適切に組み込むことで、量子ビット相互作用と情報混合が促進されることが示されている。
- 参考スコア(独自算出の注目度): 10.617463958884528
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conventional Variational Quantum Circuits (VQCs) for Quantum Machine Learning typically rely on a fixed Hermitian observable, often built from Pauli operators. Inspired by the Heisenberg picture, we propose an adaptive non-local measurement framework that substantially increases the model complexity of the quantum circuits. Our introduction of dynamical Hermitian observables with evolving parameters shows that optimizing VQC rotations corresponds to tracing a trajectory in the observable space. This viewpoint reveals that standard VQCs are merely a special case of the Heisenberg representation. Furthermore, we show that properly incorporating variational rotations with non-local observables enhances qubit interaction and information mixture, admitting flexible circuit designs. Two non-local measurement schemes are introduced, and numerical simulations on classification tasks confirm that our approach outperforms conventional VQCs, yielding a more powerful and resource-efficient approach as a Quantum Neural Network.
- Abstract(参考訳): 量子機械学習のための従来の変分量子回路(VQC)は、通常、パウリ作用素によって構築される固定されたエルミート可観測回路に依存している。
ハイゼンベルク図に触発されて、量子回路のモデル複雑さを大幅に増大させる適応的非局所測定フレームワークを提案する。
進化パラメータを持つ動的エルミート観測器の導入は、VQC回転の最適化が観測可能な空間における軌道の追跡と一致することを示す。
この視点から、標準 VQC はハイゼンベルク表現の特別な場合に過ぎないことが分かる。
さらに,非局所オブザーバブルと変分回転を適切に組み込むことで,量子ビット相互作用と情報混合が促進され,柔軟な回路設計が可能であることを示す。
2つの非局所測定手法を導入し、分類タスクの数値シミュレーションにより、我々の手法が従来のVQCよりも優れており、量子ニューラルネットワークとしてより強力で資源効率の良いアプローチをもたらすことを確認した。
関連論文リスト
- Quantum parallel information exchange (QPIE) hybrid network with transfer learning [18.43273756128771]
量子機械学習(QML)は、複雑なパターンを明らかにする可能性のある革新的なフレームワークとして登場した。
量子並列情報交換(QPIE)ハイブリッドネットワークを導入する。
量子処理ユニットにパラメータシフトルールを適用する動的勾配選択法を開発した。
論文 参考訳(メタデータ) (2025-04-05T17:25:26Z) - Quantum Adaptive Self-Attention for Quantum Transformer Models [0.0]
本稿では,量子アテンション機構を備えた古典的トランスフォーマーモデルを強化するハイブリッドアーキテクチャであるQuantum Adaptive Self-Attention (QASA)を提案する。
QASAはドット積の注意をパラメータ化量子回路(PQC)に置き換え、量子ヒルベルト空間におけるトークン間の関係を適応的に捉える。
合成時系列タスクの実験により、QASAは標準変圧器と古典的変圧器の双方と比較して、より高速な収束と優れた一般化を実現することが示された。
論文 参考訳(メタデータ) (2025-04-05T02:52:37Z) - Quantum Pointwise Convolution: A Flexible and Scalable Approach for Neural Network Enhancement [0.0]
本稿では,量子ニューラルネットワークフレームワークにポイントワイズ畳み込みを組み込んだ新しいアーキテクチャを提案する。
量子回路を用いてデータを高次元空間にマッピングし、より複雑な特徴関係を捉える。
実験では、FashionMNISTとCIFAR10データセットの分類タスクに量子ポイントワイズ畳み込み層を適用した。
論文 参考訳(メタデータ) (2024-12-02T08:03:59Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
ランダム量子スピン系の進化をモデル化するためにFNOを用いる。
量子波動関数全体の2n$の代わりに、コンパクトなハミルトン観測可能集合にFNOを適用する。
論文 参考訳(メタデータ) (2024-09-05T07:18:09Z) - Exploring quantum localization with machine learning [39.58317527488534]
本稿では、その局所化の観点から、波動関数を分類するための効率的なニューラルネットワーク(NN)アーキテクチャを提案する。
提案手法は, 量子位相空間のパラメトリゼーションにより, 改良畳み込みモデルのパターン認識機能と, 独自の「量子」NNへと導かれる。
論文 参考訳(メタデータ) (2024-06-01T08:50:26Z) - Pre-training Tensor-Train Networks Facilitates Machine Learning with Variational Quantum Circuits [70.97518416003358]
変分量子回路(VQC)は、ノイズの多い中間スケール量子(NISQ)デバイス上での量子機械学習を約束する。
テンソルトレインネットワーク(TTN)はVQC表現と一般化を向上させることができるが、結果として得られるハイブリッドモデルであるTTN-VQCは、Polyak-Lojasiewicz(PL)条件による最適化の課題に直面している。
この課題を軽減するために,プレトレーニングTTNモデルとVQCを組み合わせたPre+TTN-VQCを導入する。
論文 参考訳(メタデータ) (2023-05-18T03:08:18Z) - A Framework for Demonstrating Practical Quantum Advantage: Racing
Quantum against Classical Generative Models [62.997667081978825]
生成モデルの一般化性能を評価するためのフレームワークを構築した。
古典的および量子生成モデル間の実用的量子優位性(PQA)に対する最初の比較レースを確立する。
以上の結果から,QCBMは,他の最先端の古典的生成モデルよりも,データ制限方式の方が効率的であることが示唆された。
論文 参考訳(メタデータ) (2023-03-27T22:48:28Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
量子多体問題(Quantum many-body problem)は、例えば高温超伝導体のようなエキゾチックな量子現象をデミストする中心である。
量子状態を表すニューラルネットワーク(NN)と変分モンテカルロ(VMC)アルゴリズムの組み合わせは、そのような問題を解決する上で有望な方法であることが示されている。
ベクトル量子化技術を用いて,VMCアルゴリズムの局所エネルギー計算における冗長性を利用するNNアーキテクチャVector-Quantized Neural Quantum States (VQ-NQS)を提案する。
論文 参考訳(メタデータ) (2022-12-21T19:00:04Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - Group Convolutional Neural Networks Improve Quantum State Accuracy [1.52292571922932]
特定の対称性を持つ量子状態に対して、最大表現モデルを作成する方法を示す。
我々は,グループ同変畳み込みネットワーク(G-CNN) citecohen2016groupを実装し,メモリ使用量を増やすことなく,性能改善を実現することを実証した。
論文 参考訳(メタデータ) (2021-04-11T19:45:10Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
少数のアンシラ量子ビットを用いて環境との相互作用をシミュレートするデジタル量子アルゴリズムを開発した。
逆イジングモデルの熱状態のシミュレーションによるアルゴリズムの評価を行った。
論文 参考訳(メタデータ) (2021-03-04T18:21:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。