論文の概要: CoT-RAG: Integrating Chain of Thought and Retrieval-Augmented Generation to Enhance Reasoning in Large Language Models
- arxiv url: http://arxiv.org/abs/2504.13534v2
- Date: Mon, 19 May 2025 03:23:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-20 14:57:10.593818
- Title: CoT-RAG: Integrating Chain of Thought and Retrieval-Augmented Generation to Enhance Reasoning in Large Language Models
- Title(参考訳): CoT-RAG:大規模言語モデルにおける推論強化のための思考と検索の連鎖の統合
- Authors: Feiyang Li, Peng Fang, Zhan Shi, Arijit Khan, Fang Wang, Dan Feng, Weihao Wang, Xin Zhang, Yongjian Cui,
- Abstract要約: CoT(Chain-of- Thought)推論は、複雑なタスクにおける大規模言語モデルのLLM(LLM)パフォーマンスを高める。
提案するCoT-RAGは3つの重要な設計を持つ新しい推論フレームワークである。
精度は4.0%から44.3%に向上した。
- 参考スコア(独自算出の注目度): 14.784841713647682
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Chain-of-thought (CoT) reasoning boosts large language models' (LLMs) performance on complex tasks but faces two key limitations: a lack of reliability when solely relying on LLM-generated reasoning chains and interference from natural language reasoning steps with the models' inference process, also known as the inference logic of LLMs. To address these issues, we propose CoT-RAG, a novel reasoning framework with three key designs: (i) Knowledge Graph-driven CoT Generation,featuring knowledge graphs to modulate reasoning chain generation of LLMs, thereby enhancing reasoning credibility; (ii) Learnable Knowledge Case-aware RAG, which incorporates retrieval-augmented generation (RAG) into knowledge graphs to retrieve relevant sub-cases and sub-descriptions, providing LLMs with learnable information; (iii) Pseudo-Program Prompting Execution, which promotes greater logical rigor by guiding LLMs to execute reasoning tasks as pseudo-programs. Evaluations on nine public datasets spanning three reasoning tasks reveal significant accuracy gains--ranging from 4.0% to 44.3%--over state-of-the-art methods. Furthermore, tests on four domain-specific datasets demonstrate exceptional accuracy and efficient execution, underscoring its practical applicability and scalability.
- Abstract(参考訳): チェーン・オブ・シント推論(CoT)は、複雑なタスクにおける大きな言語モデル(LLM)のパフォーマンスを高めるが、LLMの生成した推論チェーンのみに依存する信頼性の欠如と、LLMの推論ロジックとしても知られるモデル推論プロセスによる自然言語推論ステップからの干渉の2つの大きな制限に直面している。
これらの問題に対処するため、我々は3つの重要な設計を持つ新しい推論フレームワークであるCoT-RAGを提案する。
一 知識グラフ駆動のCoT生成、LLMの推論連鎖生成を調整し、推論信頼性を高める知識グラフ
2 検索拡張生成(RAG)を知識グラフに組み込んだ学習可能な知識事例認識RAGにより、関連するサブケース及びサブ記述を検索し、学習可能な情報を提供する。
三 擬似プログラムとしての推論タスクの実行を LLM に誘導することにより、より論理的な厳密性を促進する擬似プログラム証明実行。
3つの推論タスクにまたがる9つの公開データセットの評価では、精度は4.0%から44.3%に向上した。
さらに、ドメイン固有の4つのデータセットに対するテストでは、極めて正確で効率的な実行が示され、実用性とスケーラビリティが強調されている。
関連論文リスト
- Revisiting LLM Reasoning via Information Bottleneck [57.519119962528166]
大規模言語モデル(LLM)は、最近、検証可能な報酬付き強化学習(RLVR)を通じて推論能力の顕著な進歩を示した。
本稿では,情報ボトルネック(IB)の原理に基づくLLM推論の理論的特徴について述べる。
IB対応推論最適化(IBRO)を提案する。
論文 参考訳(メタデータ) (2025-07-24T13:14:25Z) - Learning Efficient and Generalizable Graph Retriever for Knowledge-Graph Question Answering [75.12322966980003]
大規模言語モデル(LLM)は、様々な領域にわたって強い帰納的推論能力を示している。
既存のRAGパイプラインのほとんどは非構造化テキストに依存しており、解釈可能性と構造化推論を制限する。
近年,知識グラフ解答のための知識グラフとLLMの統合について検討している。
KGQAにおける効率的なグラフ検索のための新しいフレームワークであるRAPLを提案する。
論文 参考訳(メタデータ) (2025-06-11T12:03:52Z) - Faithful and Robust LLM-Driven Theorem Proving for NLI Explanations [13.485604499678262]
自然言語推論(NLI)における自然言語説明の役割
近年の研究では、大言語モデル(LLM)と定理証明器(TP)の相互作用が、NLI説明の有効性の検証と改善に役立つことが示されている。
本稿では,自己形式化時の意味喪失を軽減するための戦略について検討する。
論文 参考訳(メタデータ) (2025-05-30T06:38:39Z) - Mapping the Minds of LLMs: A Graph-Based Analysis of Reasoning LLM [11.181783720439563]
大規模言語モデル(LLM)は、拡張されたChain-of-Thought(CoT)生成を通じて洗練された推論能力を示す。
RLMは、数発のプロンプトによる性能劣化など、直感的で不安定な動作を示すことが多い。
RLMの推論過程をより良くモデル化するための統一的なグラフベース分析フレームワークを提案する。
論文 参考訳(メタデータ) (2025-05-20T03:54:57Z) - Human Cognition Inspired RAG with Knowledge Graph for Complex Problem Solving [32.293348354802504]
大規模言語モデル(LLM)は、様々な領域にわたる変換ポテンシャルを実証している。
検索・拡張生成(RAG)はLLMの精度を高めるための有望なソリューションとして浮上している。
我々は認知にインスパイアされたグラフベースのRAGフレームワークであるCogGRAGを提案する。
論文 参考訳(メタデータ) (2025-03-09T11:50:39Z) - Large Language Models Meet Symbolic Provers for Logical Reasoning Evaluation [24.081573908824353]
一階述語論理(FOL)推論はインテリジェントシステムにおいて重要である。
既存のベンチマークは、広範囲の人間のアノテーションや手作りテンプレートに依存していることが多い。
本稿では,大言語モデルの生成強度を記号型プローサの厳密性と精度で相乗化するProverGenという新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-10T15:31:54Z) - Retrieval-Based Interleaved Visual Chain-of-Thought in Real-World Driving Scenarios [69.00444996464662]
RIV-CoT(Retrieval-based Interleaved Visual Chain-of-Thought法)を提案する。
実験の結果, RIV-CoTの解答精度は3.1%向上し, バニラCoTの解答精度は4.6%向上した。
論文 参考訳(メタデータ) (2025-01-08T18:31:16Z) - Path-of-Thoughts: Extracting and Following Paths for Robust Relational Reasoning with Large Language Models [62.12031550252253]
本稿では,関係推論に対処するための新しいフレームワークであるPath-of-Thoughts(PoT)を提案する。
PoTは、問題コンテキスト内の重要なエンティティ、関係、属性を識別するタスクに依存しないグラフを効率的に抽出する。
PoTは、提案された質問に対応するグラフ内の関連する推論連鎖を特定し、潜在的な答えの推論を容易にする。
論文 参考訳(メタデータ) (2024-12-23T20:27:12Z) - GIVE: Structured Reasoning of Large Language Models with Knowledge Graph Inspired Veracity Extrapolation [108.2008975785364]
Graph Inspired Veracity Extrapolation (GIVE)は、パラメトリックメモリと非パラメトリックメモリを融合して、最小の外部入力で正確な推論を改善する新しい推論手法である。
GIVE は LLM エージェントをガイドして,最も関連する専門家データ (observe) を選択し,クエリ固有の発散思考 (reflect) に従事し,その情報を合成して最終的な出力 (speak) を生成する。
論文 参考訳(メタデータ) (2024-10-11T03:05:06Z) - Improving LLM Reasoning through Scaling Inference Computation with Collaborative Verification [52.095460362197336]
大規模言語モデル(LLM)は一貫性と正確な推論に苦しむ。
LLMは、主に正しいソリューションに基づいて訓練され、エラーを検出して学習する能力を減らす。
本稿では,CoT(Chain-of-Thought)とPoT(Program-of-Thought)を組み合わせた新しい協調手法を提案する。
論文 参考訳(メタデータ) (2024-10-05T05:21:48Z) - Strategic Chain-of-Thought: Guiding Accurate Reasoning in LLMs through Strategy Elicitation [16.350747493026432]
CoT(Chain-of-Thought)パラダイムは,大規模言語モデル(LLM)の推論能力向上のための重要なアプローチとして登場した。
中間的推論ステップを生成する前に戦略的知識を統合することでLCM性能を向上するための textbfStrategic Chain-of-Thought (SCoT) を提案する。
SCoTは1つのプロンプトの中で2段階のアプローチを採用し、まず効果的な問題解決戦略を導き、次に高品質なCoTパスと最終回答の生成を導くのに使用される。
論文 参考訳(メタデータ) (2024-09-05T06:28:05Z) - Improving Retrieval Augmented Language Model with Self-Reasoning [20.715106330314605]
本稿では,ALMの信頼性とトレーサビリティ向上を目的とした,新たな自己推論フレームワークを提案する。
このフレームワークは、関連性を認識したプロセス、エビデンスを認識した選択プロセス、軌跡解析プロセスの3つのプロセスで自己推論軌道を構築することを含む。
提案手法の優位性を示すため,4つの公開データセットにまたがるフレームワークの評価を行った。
論文 参考訳(メタデータ) (2024-07-29T09:05:10Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
大規模言語モデル(LLM)は、標準解に比べて短いがより複雑なコードを生成する。
3つのカテゴリと12のサブカテゴリを含む誤ったコードに対するバグの分類を開発し、一般的なバグタイプに対する根本原因を分析する。
そこで本研究では,LLMがバグタイプやコンパイラフィードバックに基づいて生成したコードを批判し,修正することのできる,自己批判を導入した新たな学習自由反復手法を提案する。
論文 参考訳(メタデータ) (2024-07-08T17:27:17Z) - Dual Reasoning: A GNN-LLM Collaborative Framework for Knowledge Graph Question Answering [38.31983923708175]
我々は、知識グラフ(KGs)の明示的推論のために、グラフニューラルネットワーク(GNN)に基づく外部システムを統合する新しいフレームワークであるDual-Reasoningを提案する。
我々は,DualRが高効率と解釈性を維持しつつ,最先端の性能を実現することを示す。
論文 参考訳(メタデータ) (2024-06-03T09:38:28Z) - CoT-Driven Framework for Short Text Classification: Enhancing and Transferring Capabilities from Large to Smaller Model [5.331916925505735]
短いテキスト分類(STC)は、現代デジタルプラットフォームで普及している短いが実質的な内容の処理と理解に不可欠である。
本稿では, STCタスクを4つのステップに分割するSSE-CoT法を提案する。
次に、CDMT(CoT-Driven Multi-Task Learning)フレームワークを導入し、これらの機能をより小さなモデルに拡張します。
論文 参考訳(メタデータ) (2024-01-06T08:28:20Z) - LogicAsker: Evaluating and Improving the Logical Reasoning Ability of Large Language Models [63.14196038655506]
大規模言語モデル(LLM)の論理的推論能力を評価・拡張するための新しいアプローチであるLogicAskerを紹介する。
提案手法は, LLMが論理規則を学習する際の大きなギャップを明らかにし, 異なるモデル間で29%から90%の推論失敗を識別する。
GPT-4oのようなモデルにおける論理的推論を最大5%向上させることで、これらの知見を活用して、ターゲットとなる実演例と微調整データを構築した。
論文 参考訳(メタデータ) (2024-01-01T13:53:53Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
オープン情報抽出(OIE)タスクは、構造化されていないテキストから構造化された事実を抽出することを目的としている。
一般的なタスク解決手段としてChatGPTのような大きな言語モデル(LLM)の可能性にもかかわらず、OIEタスクの最先端(教師付き)メソッドは遅れている。
論文 参考訳(メタデータ) (2023-09-07T01:35:24Z) - Exploring Self-supervised Logic-enhanced Training for Large Language Models [59.227222647741094]
本稿では,自己指導型ポストトレーニングによる論理的知識の活用の可能性について検討する。
我々はMERItの自己回帰的目的変数を考案し、パラメータサイズが30億から13億の2つのLLM系列、すなわちFLAN-T5とLLaMAと統合する。
2つの挑戦的な論理的推論ベンチマークの結果は、LogicLLMの有効性を示している。
論文 参考訳(メタデータ) (2023-05-23T06:13:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。