論文の概要: Generative AI Act II: Test Time Scaling Drives Cognition Engineering
- arxiv url: http://arxiv.org/abs/2504.13828v3
- Date: Mon, 28 Apr 2025 12:41:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:52.612684
- Title: Generative AI Act II: Test Time Scaling Drives Cognition Engineering
- Title(参考訳): Generative AI Act II: テスト時間スケーリングによる認知エンジニアリング
- Authors: Shijie Xia, Yiwei Qin, Xuefeng Li, Yan Ma, Run-Ze Fan, Steffi Chern, Haoyang Zou, Fan Zhou, Xiangkun Hu, Jiahe Jin, Yanheng He, Yixin Ye, Yixiu Liu, Pengfei Liu,
- Abstract要約: 2024年現在)は、モデルが知識検索システムからテスト時間スケーリング技術を通じて思考構築エンジンへ移行している場所である。
この新たなパラダイムは、言語に基づく思考を通じて、AIとマインドレベルなつながりを確立する。
包括的なチュートリアルと最適化された実装を通じて、これらの先進的なアプローチを体系的に分解する。
- 参考スコア(独自算出の注目度): 28.818378991228563
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The first generation of Large Language Models - what might be called "Act I" of generative AI (2020-2023) - achieved remarkable success through massive parameter and data scaling, yet exhibited fundamental limitations such as knowledge latency, shallow reasoning, and constrained cognitive processes. During this era, prompt engineering emerged as our primary interface with AI, enabling dialogue-level communication through natural language. We now witness the emergence of "Act II" (2024-present), where models are transitioning from knowledge-retrieval systems (in latent space) to thought-construction engines through test-time scaling techniques. This new paradigm establishes a mind-level connection with AI through language-based thoughts. In this paper, we clarify the conceptual foundations of cognition engineering and explain why this moment is critical for its development. We systematically break down these advanced approaches through comprehensive tutorials and optimized implementations, democratizing access to cognition engineering and enabling every practitioner to participate in AI's second act. We provide a regularly updated collection of papers on test-time scaling in the GitHub Repository: https://github.com/GAIR-NLP/cognition-engineering
- Abstract(参考訳): 生成型AI(2020-2023)の"Act I"と呼ばれる第1世代の大規模言語モデルは、膨大なパラメータとデータスケーリングを通じて大きな成功を収めたが、知識の遅延、浅い推論、制約付き認知プロセスといった基本的な制限が示された。
この時代には、自然言語による対話レベルのコミュニケーションを可能にするAIの第一のインターフェースとして、プロンプトエンジニアリングが登場しました。
現在、モデルが知識検索システム(潜時空間)から思考構築エンジンへと、テストタイムスケーリング技術を通じて移行している"Act II"(2024年現在)の出現を目撃しています。
この新たなパラダイムは、言語に基づく思考を通じて、AIとマインドレベルなつながりを確立する。
本稿では,認知工学の概念的基礎を明らかにするとともに,この瞬間が開発に重要である理由を説明する。
包括的なチュートリアルと最適化された実装を通じて、これらの高度なアプローチを体系的に分解し、認知工学へのアクセスを民主化し、すべての実践者がAIの第2幕に参加できるようにします。
GitHub Repositoryで定期的に更新されたテストタイムスケーリングに関する論文のコレクションを提供しています。
関連論文リスト
- Personalized Artificial General Intelligence (AGI) via Neuroscience-Inspired Continuous Learning Systems [3.764721243654025]
現在のアプローチは、タスク固有のパフォーマンスを改善するが、継続的で適応性があり、一般化された学習を可能にするには不十分なモデルパラメータの拡張に大きく依存している。
本稿では、連続学習と神経科学に触発されたAIの現状を概観し、脳のような学習機構をエッジ展開に統合したパーソナライズされたAGIのための新しいアーキテクチャを提案する。
これらの洞察に基づいて、我々は、相補的な高速かつスローな学習モジュール、シナプス的自己最適化、デバイス上の寿命適応をサポートするためのメモリ効率のモデル更新を特徴とするAIアーキテクチャの概要を述べる。
論文 参考訳(メタデータ) (2025-04-27T16:10:17Z) - Semantic Web -- A Forgotten Wave of Artificial Intelligence? [0.362565288307551]
セマンティックウェブの台頭は知識表現、論理、推論に基づいている。
ChatGPTは、ディープラーニングと高度なニューラルモデルに基づいて構築されたAI熱意を再燃させた。
Semantic Webは、World Wide WebをAIが推論し、理解し、行動できるエコシステムに変えることを目的としています。
論文 参考訳(メタデータ) (2025-03-20T12:55:48Z) - Programming with AI: Evaluating ChatGPT, Gemini, AlphaCode, and GitHub Copilot for Programmers [0.0]
本稿では、ChatGPT、Gemini(Bard AI)、AlphaCode、GitHub Copilotなど、主要なプログラミングアシスタントの徹底的な評価を行う。
AIモデルの潜在能力を具現化する倫理的開発プラクティスの必要性を強調している。
論文 参考訳(メタデータ) (2024-11-14T06:40:55Z) - Cognition is All You Need -- The Next Layer of AI Above Large Language
Models [0.0]
我々は,大規模言語モデル以外のニューロシンボリック認知のためのフレームワークであるCognitive AIを紹介する。
我々は、認知AIがAGIのようなAI形態の進化に必須の先駆者であり、AGIは独自の確率論的アプローチでは達成できないと主張する。
我々は、大規模言語モデル、AIの採用サイクル、および商用の認知AI開発に関する議論で締めくくります。
論文 参考訳(メタデータ) (2024-03-04T16:11:57Z) - Enabling High-Level Machine Reasoning with Cognitive Neuro-Symbolic
Systems [67.01132165581667]
本稿では,認知アーキテクチャを外部のニューロシンボリックコンポーネントと統合することにより,AIシステムにおける高レベル推論を実現することを提案する。
本稿では,ACT-Rを中心としたハイブリッドフレームワークについて紹介し,最近の応用における生成モデルの役割について論じる。
論文 参考訳(メタデータ) (2023-11-13T21:20:17Z) - Exploration with Principles for Diverse AI Supervision [88.61687950039662]
次世代の予測を用いた大規模トランスフォーマーのトレーニングは、AIの画期的な進歩を生み出した。
この生成AIアプローチは印象的な結果をもたらしたが、人間の監督に大きく依存している。
この人間の監視への強い依存は、AIイノベーションの進歩に重大なハードルをもたらす。
本稿では,高品質なトレーニングデータを自律的に生成することを目的とした,探索型AI(EAI)という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-10-13T07:03:39Z) - AI-Generated Images as Data Source: The Dawn of Synthetic Era [61.879821573066216]
生成AIは、現実世界の写真によく似た合成画像を作成する可能性を解き放った。
本稿では、これらのAI生成画像を新しいデータソースとして活用するという革新的な概念を探求する。
実際のデータとは対照的に、AI生成データには、未整合のアブリダンスやスケーラビリティなど、大きなメリットがある。
論文 参考訳(メタデータ) (2023-10-03T06:55:19Z) - A Survey on Brain-Inspired Deep Learning via Predictive Coding [85.93245078403875]
予測符号化(PC)は、マシンインテリジェンスタスクにおいて有望なパフォーマンスを示している。
PCは様々な脳領域で情報処理をモデル化することができ、認知制御やロボティクスで使用することができる。
論文 参考訳(メタデータ) (2023-08-15T16:37:16Z) - Selected Trends in Artificial Intelligence for Space Applications [69.3474006357492]
この章は、差別化可能なインテリジェンスとオンボード機械学習に焦点を当てている。
欧州宇宙機関(ESA)Advanced Concepts Team(ACT)から選ばれたいくつかのプロジェクトについて論じる。
論文 参考訳(メタデータ) (2022-12-10T07:49:50Z) - Thinking Fast and Slow in AI: the Role of Metacognition [35.114607887343105]
最先端のAIには、(人間)インテリジェンスの概念に自然に含まれる多くの能力がない。
私たちは、人間がこれらの能力を持つことができるメカニズムをよりよく研究することで、これらの能力でAIシステムを構築する方法を理解するのに役立ちます。
論文 参考訳(メタデータ) (2021-10-05T06:05:38Z) - The application of artificial intelligence in software engineering: a
review challenging conventional wisdom [0.9651131604396904]
この調査章は、ソフトウェア工学に適用されるAIの最も一般的な方法のレビューである。
このレビューでは、1975年から2017年にかけての要件フェーズについて、46の主要なAI駆動手法が発見されている。
この章の目的は、以下の質問に答えることである。
論文 参考訳(メタデータ) (2021-08-03T15:59:59Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
AIがIoTをより速く、より賢く、よりグリーンで、より安全にするための力を与える方法を示します。
まず、認識、学習、推論、行動の4つの視点から、IoTのためのAI研究の進歩を示す。
最後に、私たちの世界を深く再形成する可能性が高いAIoTの有望な応用をいくつかまとめる。
論文 参考訳(メタデータ) (2020-11-17T13:14:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。